Bioinspired Design of Materials Surfaces


Book Description

Bioinspired Design of Materials Surfaces reviews novel methods and technologies used to design surfaces and materials for smart material and device applications. The author discusses how materials wettability can be impacted by the fabrication of micro- and nanostructures, anisotropic structures, gradient structures, and heterogeneous patterned structures on the surfaces of materials. The design of these structures was inspired by nature, including lotus, cactus, beetle back and butterfly wings, spider silk, and shells. The author reviews the various wettability functions that can result from these designs, such as self-cleaning, directional adhesion, droplet driving, anti-adhesion, non-wetting, liquid repellent properties, liquid separation, liquid splitting, and more. This book presents a key reference on how to fabricate bioinspired structures on materials for desired functions of materials wettability. It also discusses challenges, opportunities and many potential applications, such as oil-water separation devices, water harvesting devices and photonic device applications.




Bioinspired Materials Surfaces


Book Description

This book highlights the functions and models of biological surfaces with unique wettability and elucidates the methods to realize bioinspired surfaces. It discusses the theory and mechanism of fabrication that will help researchers to understand the nature of functional surfaces and to design them better for various applications. A model can be extracted from biological surfaces, such as lotus leaf, spider silk, butterfly wing, and beetle back, and learning from these natural biological features has gained more attention in recent years. The purpose of this learning is to develop new functional materials related to the research areas of physics, chemistry, biology, and materials science, such as some promising applications for micro-fluidic devices and functional textiles as well as corrosion resistance, liquid transportation, antifogging, and water-collecting engineering systems. The book is a good resource for researchers, engineers, scientists, and also students and general readers with innovative ideas for designing novel materials for future scientific works.




Bio-inspired Polymers


Book Description

Many key aspects of life are based on naturally occurring polymers, such as polysaccharides, proteins and DNA. Unsurprisingly, their molecular functionalities, macromolecular structures and material properties are providing inspiration for designing new polymeric materials with specific functions, for example, responsive, adaptive and self-healing materials. Bio-inspired Polymers covers all aspects of the subject, ranging from the synthesis of novel polymers, to structure-property relationships, materials with advanced properties and applications of bio-inspired polymers in such diverse fields as drug delivery, tissue engineering, optical materials and lightweight structural materials. Written and edited by leading experts on the topic, the book provides a comprehensive review and essential graduate level text on bio-inspired polymers for biochemists, materials scientists and chemists working in both industry and academia.




Surfaces and Interfaces of Biomimetic Superhydrophobic Materials


Book Description

A comprehensive and systematic treatment that focuses on surfaces and interfaces phenomena inhabited in biomimetic superhydrophobic materials, offering new fundamentals and novel insights. As such, this new book covers the natural surfaces, fundamentals, fabrication methods and exciting applications of superhydrophobic materials, with particular attention paid to the smart surfaces that can show switchable and reversible water wettability under external stimuli, such as pH, temperature, light, solvents, and electric fields. It also includes recent theoretical advances of superhydrophobic surfaces with regard to the wetting process, and some promising breakthroughs to promote this theory. As a result, materials scientists, physicists, physical chemists, chemical engineers, and biochemists will benefit greatly from a deeper understanding of this topic.




Self-Healing Smart Materials


Book Description

This comprehensive book describes the design, synthesis, mechanisms, characterization, fundamental properties, functions and development of self-healing smart materials and their composites with their allied applications. It covers cementitious concrete composites, bleeding composites, elastomers, tires, membranes, and composites in energy storage, coatings, shape-memory, aerospace and robotic applications. The 21 chapters are written by researchers from a variety of disciplines and backgrounds.




Nanotechnology for Oil-Water Separation


Book Description

Nanotechnology for Oil-Water Separation: From Fundamentals to Industrial Applications explores how nanotechnologically engineered solutions (modified meshes, carbon nanotubes, functionalized fabrics, textile or hybrid elements for bio-membranes, nanofibrous materials, and many more) can be used to remediate current damage to the environment for a better tomorrow. Design and fabrication of low-cost, effective and environmentally friendly micro/nanomaterials exhibiting strong wettability properties and mechanical and chemical stability are examined, along with current research developments and possible future directions, making this book an essential read for researchers, advanced students, and industry professionals with an interest in nanotechnology and sustainable (bio)technologies. The increasing amounts of industrial substances released by petrochemical, steel or gas-generating plants and food-processing factories into water poses an ever more serious environmental threat. Due to the significant adverse impact on the natural ecosystem, aquatic organisms and human health, the scientific community has made its priority to find sustainable methods to separate oil-water mixtures. - Provides an "all-in-one" reference on oil-water separation using cutting-edge, cost-effective, and environmentally-friendly nanotechnology-based solutions - Sheds light on the proper disposal, management and treatment processes of petroleum wastewater - Includes a discussion on new developments and findings, as well as challenges and concerns with an indication of where the field may move in coming years




Nature-Inspired Structured Functional Surfaces


Book Description

Gives a comprehensive description on the biological model, basic physical models, fabrication/characterization of bioinspired materials and their functions.




Nature-Inspired Sensors


Book Description

Nature-Inspired Sensors presents and discusses the basic principles and latest developments in nature-inspired sensing and biosensing materials, along with the design and mechanisms for analyzing their potential in multifunctional sensing applications. Sections provide a comprehensive review of certain fundamental mechanisms in different living creatures including humans, animals, and plants. In addition, the book presents and discusses ways for imitating various nature-inspired structural features and their functional properties such as hierarchical, interlocked, porous, bristle-like structures, and hetero-layered brick-and-mortar structures. Sections also highlight the utility of these structures and their properties for sensing functions, which include static coloration, self-cleaning, adhesive, underwater navigation and object detection, electric charge generation, and sensitive olfactory functions for detecting various substances. This is followed by an appraisal of accumulating knowledge and its translation from the laboratory to the point-of-care phase, using selective sensors as well as desktop and wearable artificial sensing devices, e.g., electronic noses and electronic skins, in conjunction with AI-assisted data processing and decision-making in the targeted field of application. - Discusses current strategies for fabricating nature-derived bio/chemical sensors - Presents ways to apply nature-derived bio/chemical sensors in real life - Discusses the future of nature derived bio/chemical sensors