Functional Properties of Bio-inspired Surfaces


Book Description

This review volume explores how the current knowledge of the biological structures occuring on the surface of moth eyes, leaves, sharkskin, and the feet of reptiles can be transferred to functional technological materials.




Biomimetics -- Materials, Structures and Processes


Book Description

The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.




Biomimetic Principles and Design of Advanced Engineering Materials


Book Description

This book explores the structure-property-process relationship of biomaterials from engineering and biomedical perspectives, and the potential of bio-inspired materials and their applications. A large variety of natural materials with outstanding physical and mechanical properties have appeared in the course of evolution. From a bio-inspired viewpoint, materials design requires a novel and highly cross disciplinary approach. Considerable benefits can be gained by providing an integrated approach using bio-inspiration with materials science and engineering. The book is divided into three parts; Part One focuses on mechanical aspects, dealing with conventional material properties: strength, toughness, hardness, wear resistance, impact resistance, self-healing, adhesion, and adaptation and morphing. Part Two focuses on functional materials with unique capabilities, such as self-cleaning, stimuli-response, structural color, anti-reflective materials, catalytic materials for clean energy conversion and storage, and other related topics. Part Three describes how to mimic natural materials processes to synthesize materials with low cost, efficient and environmentally friendly approaches. For each chapter, the approach is to describe situations in nature first and then biomimetic materials, fulfilling the need for an interdisciplinary approach which overlaps both engineering and materials science.




Bioinspired Structures and Design


Book Description

Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.




Biological Materials Science


Book Description

Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.




Handbook of Materials Structures, Properties, Processing and Performance


Book Description

This extensive knowledge base provides a coherent description of advanced topics in materials science and engineering with an interdisciplinary/multidisciplinary approach. The book incorporates a historical account of critical developments and the evolution of materials fundamentals, providing an important perspective for materials innovations, including advances in processing, selection, characterization, and service life prediction. It includes the perspectives of materials chemistry, materials physics, engineering design, and biological materials as these relate to crystals, crystal defects, and natural and biological materials hierarchies, from the atomic and molecular to the macroscopic, and emphasizing natural and man-made composites. This expansive presentation of topics explores interrelationships among properties, processing, and synthesis (historic and contemporary). The book serves as both an authoritative reference and roadmap of advanced materials concepts for practitioners, graduate-level students, and faculty coming from a range of disciplines.




Bioinspired Materials for Medical Applications


Book Description

Bioinspired Materials for Medical Applications examines the inspiration of natural materials and their interpretation as modern biomaterials. With a strong focus on therapeutic and diagnostic applications, the book also examines the development and manipulation of bioinspired materials in regenerative medicine. The first set of chapters is heavily focused on bioinspired solutions for the delivery of drugs and therapeutics that also offer information on the fundamentals of these materials. Chapters in part two concentrate on bioinspired materials for diagnosis applications with a wide coverage of sensor and imaging systems With a broad coverage of the applications of bioinspired biomaterials, this book is a valuable resource for biomaterials researchers, clinicians, and scientists in academia and industry, and all those who wish to broaden their knowledge in the allied field. - Explores how materials designed and produced with inspiration from nature can be used to enhance man-made biomaterials and medical devices - Brings together the two fields of biomaterials and bioinspired materials - Written by a world-class team of research scientists, engineers, and clinicians




Biomimetic Medical Materials


Book Description

This volume outlines the current status in the field of biomimetic medical materials and illustrates research into their applications in tissue engineering. The book is divided into six parts, focusing on nano biomaterials, stem cells, tissue engineering, 3D printing, immune responses and intellectual property. Each chapter has its own introduction and outlines current research trends in a variety of applications of biomimetic medical materials. The biomimetic medical materials that are covered include functional hydrogels, nanoparticles for drug delivery and medicine, the 3D bioprinting of biomaterials, sensor materials, stem cell interactions with biomaterials, immune responses to biomaterials, biodegradable hard scaffolds for tissue engineering, as well as other important topics, like intellectual property. Each chapter is written by a team of experts. This volume attempts to introduce the biomimetic properties of biomedical materials within the context of our current understanding of the nanotechnology of nanoparticles and fibres and the macroscopic aspects of 3D bioprinting.




Inspired by Biology


Book Description

Scientists have long desired to create synthetic systems that function with the precision and efficiency of biological systems. Using new techniques, researchers are now uncovering principles that could allow the creation of synthetic materials that can perform tasks as precise as biological systems. To assess the current work and future promise of the biology-materials science intersection, the Department of Energy and the National Science Foundation asked the NRC to identify the most compelling questions and opportunities at this interface, suggest strategies to address them, and consider connections with national priorities such as healthcare and economic growth. This book presents a discussion of principles governing biomaterial design, a description of advanced materials for selected functions such as energy and national security, an assessment of biomolecular materials research tools, and an examination of infrastructure and resources for bridging biological and materials science.




Biomimetic Materials Chemistry


Book Description

* Provides new insights into materials science * Indicates the value of biology in materials science * Demonstrates how new interdisciplinary studies are influencing the fields of materials science and chemistry * Surveys this new field and shows what progress has been made as well as indicating the potential of these applications * Leading scientists review biomimetic approaches to the synthesis and processing of nanoparticles, thin patterned films, ceramics, and organic-inorganic composites * Focuses on molecule synthesis, templating, organized construction and microstructural processing of biomimetic materials related titles are: - Meyers: Molecular Biology and Biotechnology - Silver: Biocompatibility Vol.1: Polymers