Biological Flows


Book Description

Biomechanics has a distinguished history extending at least to the 16th Century. However the later half oftbis century has seen an explosion ofthe field with it being viewed as affering exciting challenges for physical scientists and engineers interested in the life sciences, and wonderful opportunities for life scientists eager to collaborate with physical scientists and engineers and to render their scientific work more fundamental. That the field is now weil established and expanding is demonstrated by the formation of a World Committee for Biomechanics and the success and large participation in the 1st and 2nd World Congresses of Biomechanics, held respectively in San Diego in 1990 and in Amsterdam in 1994. With more than 1350 scientific papers delivered at the 2nd World Congress, either within symposia or oral or poster sessions, it would have been out of the question to try to produce comprehensive edited proceedings. Moreover, we are confident that most of the papers have been or will be published in one ofthe excellentjoumals covering the field. But of effort contributed by the plenary lecturers and the tutorial we thought that the large amount and keynote speakers of various symposia deserved tobe recognised in the form of a specific publication, thus also allowing those unable to attend the presentatiops . . tC\ sh?r~ in the findings. Furthermore, we feel that there is now a need to review aspects 'oftlie freld.




Heat Transfer and Fluid Flow in Biological Processes


Book Description

Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies Reviews the most recent advances in modeling techniques




Chemical And Biological Processes In Fluid Flows: A Dynamical Systems Approach


Book Description

Many chemical and biological processes take place in fluid environments in constant motion — chemical reactions in the atmosphere, biological population dynamics in the ocean, chemical reactors, combustion, and microfluidic devices. Applications of concepts from the field of nonlinear dynamical systems have led to significant progress over the last decade in the theoretical understanding of complex phenomena observed in such systems.This book introduces the theoretical approaches for describing mixing and transport in fluid flows. It reviews the basic concepts of dynamical phenomena arising from the nonlinear interactions in chemical and biological systems. The coverage includes a comprehensive overview of recent results on the effect of mixing on spatial structure and the dynamics of chemically and biologically active components in fluid flows, in particular oceanic plankton dynamics./a




Fields, Forces, and Flows in Biological Systems


Book Description

Fields, Forces, and Flows in Biological Systems describes the fundamental driving forces for mass transport, electric current, and fluid flow as they apply to the biology and biophysics of molecules, cells, tissues, and organs. Basic mathematical and engineering tools are presented in the context of biology and physiology.The chapters are structured in a framework that moves across length scales from molecules to membranes to tissues. Examples throughout the text deal with applications involving specific biological tissues, cells, and macromolecules. In addition, a variety of applications focus on sensors, actuators, diagnostics, and microphysical measurement devices (e.g., bioMEMs/NEMs microfluidic devices) in which transport and electrokinetic interactions are critical.This textbook is written for advanced undergraduate and graduate students in biological and biomedical engineering and will be a valuable resource for interdisciplinary researchers including biophysicists, physical chemists, materials scientists, and chemical, electrical, and mechanical engineers seeking a common language on the subject.




Biofluid Mechanics


Book Description

Both broad and deep in coverage, Rubenstein shows that fluid mechanics principles can be applied not only to blood circulation, but also to air flow through the lungs, joint lubrication, intraocular fluid movement and renal transport. Each section initiates discussion with governing equations, derives the state equations and then shows examples of their usage. Clinical applications, extensive worked examples, and numerous end of chapter problems clearly show the applications of fluid mechanics to biomedical engineering situations. A section on experimental techniques provides a springboard for future research efforts in the subject area. Uses language and math that is appropriate and conducive for undergraduate learning, containing many worked examples and end of chapter problems All engineering concepts and equations are developed within a biological context Covers topics in the traditional biofluids curriculum, as well as addressing other systems in the body that can be described by biofluid mechanics principles, such as air flow through the lungs, joint lubrication, intraocular fluid movement, and renal transport Clinical applications are discussed throughout the book, providing practical applications for the concepts discussed.




Biological and Bio-Inspired Fluid Dynamics


Book Description

This text provides the reader with tools necessary to study biological and bio-inspired flows, all the while developing an appreciation for their evolutionary and engineering constraints. It is suitable for students already exposed to introductory concepts in fluid mechanics and applied mechanics as a whole, but who would not need an advanced training in fluid mechanics per se. Currently no textbook exists that can take students from an introductory position in fluid mechanics to these contemporary topics of interest. The book is ideal for upper-level undergraduates and graduate students studying a range of engineering domains as well as biology, or even medicine.




Chemical and Biological Processes in Fluid Flows


Book Description

Many chemical and biological processes take place in fluid environments in constant motion OCo chemical reactions in the atmosphere, biological population dynamics in the ocean, chemical reactors, combustion, and microfluidic devices. Applications of concepts from the field of nonlinear dynamical systems have led to significant progress over the last decade in the theoretical understanding of complex phenomena observed in such systems. This book introduces the theoretical approaches for describing mixing and transport in fluid flows. It reviews the basic concepts of dynamical phenomena arising from the nonlinear interactions in chemical and biological systems. The coverage includes a comprehensive overview of recent results on the effect of mixing on spatial structure and the dynamics of chemically and biologically active components in fluid flows, in particular oceanic plankton dynamics. Sample Chapter(s). Chapter 1: Fluid Flows (248 KB). Contents: Fluid Flows; Mixing and Dispersion in Fluid Flows; Chemical and Ecological Models; Reaction-Diffusion Dynamics; Fast Binary Reactions and the Lamellar Approach; Decay-Type and Stable Reaction Dynamics in Flows; Mixing in Autocatalytic-Type Processes; Mixing in Oscillatory Media; Further Reading. Readership: Physicists, applied mathematicians, chemical engineers and marine ecologists.




Life in Moving Fluids


Book Description

This text discusses the applications of fluid mechanics to biology. It provides coverage of the field since the 1980s, with details of literature. It includes sections on jet propulsion, biological pumps, swimming, blood flow, and accelerations reaction and Murray's law.







Life in Moving Fluids


Book Description

Both a landmark text and reference book, Steven Vogel's Life in Moving Fluids has also played a catalytic role in research involving the applications of fluid mechanics to biology. In this revised edition, Vogel continues to combine humor and clear explanations as he addresses biologists and general readers interested in biological fluid mechanics, offering updates on the field over the last dozen years and expanding the coverage of the biological literature. His discussion of the relationship between fluid flow and biological design now includes sections on jet propulsion, biological pumps, swimming, blood flow, and surface waves, and on acceleration reaction and Murray's law. This edition contains an extensive bibliography for readers interested in designing their own experiments.