An Introduction to Biological Membranes


Book Description

An Introduction to Biological Membranes: From Bilayers to Rafts covers many aspects of membrane structure/function that bridges membrane biophysics and cell biology. Offering cohesive, foundational information, this publication is valuable for advanced undergraduate students, graduate students and membranologists who seek a broad overview of membrane science. Brings together different facets of membrane research in a universally understandable manner Emphasis on the historical development of the field Topics include membrane sugars, membrane models, membrane isolation methods, and membrane transport







Transport And Diffusion Across Cell Membranes


Book Description

Transport and Diffusion across Cell Membranes is a comprehensive treatment of the transport and diffusion of molecules and ions across cell membranes. This book shows that the same kinetic equations (with appropriate modification) can describe all the specialized membrane transport systems: the pores, the carriers, and the two classes of pumps. The kinetic formalism is developed step by step and the features that make a system effective in carrying out its biological role are highlighted. This book is organized into six chapters and begins with an introduction to the structure and dynamics of cell membranes, followed by a discussion on how the membrane acts as a barrier to the transmembrane diffusion of molecules and ions. The following chapters focus on the role of the membrane's protein components in facilitating transmembrane diffusion of specific molecules and ions, measurements of diffusion through pores and the kinetics of diffusion, and the structure of such pores and their biological regulation. This book methodically introduces the reader to the carriers of cell membranes, the kinetics of facilitated diffusion, and cotransport systems. The primary active transport systems are considered, emphasizing the pumping of an ion (sodium, potassium, calcium, or proton) against its electrochemical gradient during the coupled progress of a chemical reaction while a conformational change of the pump enzyme takes place. This book is of interest to advanced undergraduate students, as well as to graduate students and researchers in biochemistry, physiology, pharmacology, and biophysics.







Transport Across Single Biological Membranes


Book Description

This second Volume in the series on Membrane Transport in Biology contains a group of essays on transport across single biological membranes separating the inside and outside of cells or organelles. We have not attempted to include material on all types of plasma and intracellular membranes, but rather have emphasized structures which have been studied relatively thoroughly. Four chapters describe transport of different types of molecules and ions across the plasma membranes of mammalian red cells. Two essays concern the excitable membranes of nerve and muscle cells while the remaining four chapters treat transport across several types of intracellular membranes. Water makes up more than two-thirds of the mass of most living cells. The transport of water between the inside and outside of cells and organelles is important for the function of these structures. As a result of investigations in many laboratories over the past four decades, our picture of the water permea bility of the red cell membranes is rather detailed when compared to the water permeability of other biological membranes. In Chapter 1, R. I. Macey describes this picture and also considers the permeability of red cell membranes to non electrolytes, including metabolic substrates such as sugars, amino acids, purines and nucleosides.




Membrane Transport


Book Description

Not many years ago, problems of membranes and transport attracted the attention of but a few dozen enthusiasts, mainly physiolo gists who recognize~ the significance of membranes for the stabilization of the general steady state of organisms. The first symposium organ ized some fifteen years ago could boast of the attendance of perhaps fifty scientists (the remaining fifty were not yet sure that membranes was the topic of their choice), ranging in specialization from physical chemistry to bacterial genetics, who clairvoyantly decided to study what now has become the number one subject at most congresses of biophysics, physiology, and even biochemistry and microbiology. As is the case with many rapidly developing fields, the interest in membranes and transport seems to be growing out of bounds and the whole field of membra no logy, interdisciplinary as it is, has penetrated into the realms of a number of branches of physics, chemistry, and biology. Its subject is primarily biological and, although much has been done in the world to increase the "exactness" of biology over the past thirty years, one cannot strive for a rigorous mathematical description of biological phenomena since, as M. H.




Membrane Transport Mechanism


Book Description

This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing numbers of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights. The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism. This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers. The selected examples impressively demonstrate how the combination of functional analysis, crystallography, investigation of dynamics and computational studies has made it possible to create a conclusive picture or more precisely, “a molecular movie”. Although we are still far from a complete molecular description of the alternating access mechanism, remarkable progress has been made from static snapshots towards membrane transport dynamics.




Principles and Models of Biological Transport


Book Description

This text is designed for a first course in biological mass transport, and the material in it is presented at a level that is appropriate to advanced undergraduates or early graduate level students. Its orientation is somewhat more physical and mathematical than a biology or standard physiology text, reflecting its origins in a transport course that I teach to undergraduate (and occasional graduate) biomedical engineering students in the Whiting School of Engineering at Johns Hopkins. The audience for my cours- and presumably for this text - also includes chemical engineering undergraduates concentrating in biotechnology, and graduate students in biophysics. The organization of this book differs from most texts that at tempt to present an engineering approach to biological transport. What distinguishes biological transport from other mass transfer processes is the fact that biological transport is biological. Thus, we do not start with the engineering principles of mass transport (which are well presented elsewhere) and then seek biological ap plications of these principles; rather, we begin with the biological processes themselves, and then develop the tools that are needed to describe them. As a result, more physiology is presented in this text than is often found in books dealing with engineering applica tions in the life sciences.




Concepts of Biology


Book Description

Concepts of Biology is designed for the single-semester introduction to biology course for non-science majors, which for many students is their only college-level science course. As such, this course represents an important opportunity for students to develop the necessary knowledge, tools, and skills to make informed decisions as they continue with their lives. Rather than being mired down with facts and vocabulary, the typical non-science major student needs information presented in a way that is easy to read and understand. Even more importantly, the content should be meaningful. Students do much better when they understand why biology is relevant to their everyday lives. For these reasons, Concepts of Biology is grounded on an evolutionary basis and includes exciting features that highlight careers in the biological sciences and everyday applications of the concepts at hand.We also strive to show the interconnectedness of topics within this extremely broad discipline. In order to meet the needs of today's instructors and students, we maintain the overall organization and coverage found in most syllabi for this course. A strength of Concepts of Biology is that instructors can customize the book, adapting it to the approach that works best in their classroom. Concepts of Biology also includes an innovative art program that incorporates critical thinking and clicker questions to help students understand--and apply--key concepts.




Transport Across Single Biological Membranes


Book Description

This second Volume in the series on Membrane Transport in Biology contains a group of essays on transport across single biological membranes separating the inside and outside of cells or organelles. We have not attempted to include material on all types of plasma and intracellular membranes, but rather have emphasized structures which have been studied relatively thoroughly. Four chapters describe transport of different types of molecules and ions across the plasma membranes of mammalian red cells. Two essays concern the excitable membranes of nerve and muscle cells while the remaining four chapters treat transport across several types of intracellular membranes. Water makes up more than two-thirds of the mass of most living cells. The transport of water between the inside and outside of cells and organelles is important for the function of these structures. As a result of investigations in many laboratories over the past four decades, our picture of the water permea bility of the red cell membranes is rather detailed when compared to the water permeability of other biological membranes. In Chapter 1, R. I. Macey describes this picture and also considers the permeability of red cell membranes to non electrolytes, including metabolic substrates such as sugars, amino acids, purines and nucleosides.