Biological Methylation and Drug Design


Book Description

This book has been developed from its earlier and far less formal presentment as the proceedings of a symposium entitled The Biochemistry of S-Adenosylmethionine as a Basis for Drug Design that was held at the Solstrand Fjord Hotel in Bergen, Norway on June 30-July 4, 1985. The purpose of the symposium was to bring together scientists from various disciplines (biochemistry, pharmacology, virology, immunology, chemistry, medicine, and so on) to discuss the recent advances that have been made in our understanding of the biological roles of S adenosylmethionine (AdoMet) and to discuss the feasibility of utilizing AdoMet-dependent enzymes as targets for drug design. Thus the information provided herein will be of value not only to basic scientists involved in elucidating the role of AdoMet in biology, but also to medicinal chemists who are using this basic knowledge in the process of drug design. The volume should also be of interest to pharmacologists and clinicians involved in biological evaluation of potential therapeutic agents arising from the efforts of the biochemists and medicinal chemists. Each plenary speaker at the symposium was requested to submit a chapter reviewing recent contributions of their discipline to our base of knowledge about the biological role of AdoMet. Topics covered in this volume include protein and phospholipid methylations (Section A), nucleic acid methyl ations (Section B), the regulation of AdoMet, S-adenosylhomocysteine, and methylthioadenosine metabolism (Section C), clinical aspects of AdoMet (Section D), and the design, synthesis, and biological evaluation of trans methylation inhibitors (Section E).




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




Evolution of Translational Omics


Book Description

Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.




Bioinformatics and Drug Discovery


Book Description

Recent advances in drug discovery have been rapid. The second edition of Bioinformatics and Drug Discovery has been completely updated to include topics that range from new technologies in target identification, genomic analysis, cheminformatics, protein analysis, and network or pathway analysis. Each chapter provides an extended introduction that describes the theory and application of the technology. In the second part of each chapter, detailed procedures related to the use of these technologies and software have been incorporated. Written in the highly successful Methods in Molecular Biology series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Bioinformatics and Drug Discovery, Second Edition seeks to aid scientists in the further study of the rapidly expanding field of drug discovery.




Chemical Epigenetics


Book Description

This book presents an authoritative review of the most significant findings about all the epigenetic targets (writers, readers, and erasers) and their implication in physiology and pathology. The book also covers the design, synthesis and biological validation of epigenetic chemical modulators, which can be useful as novel chemotherapeutic agents. Particular attention is given to the chemical mechanisms of action of these molecules and to the drug discovery prose which allows their identification. This book will appeal to students who want to know the extensive progresses made by epigenetics (targets and modulators) in the last years from the beginning, and to specialized scientists who need an instrument to quickly search and check historical and/or updated notices about epigenetics.




Systems Biology in Drug Discovery and Development


Book Description

The first book to focus on comprehensive systems biology as applied to drug discovery and development Drawing on real-life examples, Systems Biology in Drug Discovery and Development presents practical applications of systems biology to the multiple phases of drug discovery and development. This book explains how the integration of knowledge from multiple sources, and the models that best represent that integration, inform the drug research processes that are most relevant to the pharmaceutical and biotechnology industries. The first book to focus on comprehensive systems biology and its applications in drug discovery and development, it offers comprehensive and multidisciplinary coverage of all phases of discovery and design, including target identification and validation, lead identification and optimization, and clinical trial design and execution, as well as the complementary systems approaches that make these processes more efficient. It also provides models for applying systems biology to pharmacokinetics, pharmacodynamics, and candidate biomarker identification. Introducing and explaining key methods and technical approaches to the use of comprehensive systems biology on drug development, the book addresses the challenges currently facing the pharmaceutical industry. As a result, it is essential reading for pharmaceutical and biotech scientists, pharmacologists, computational modelers, bioinformaticians, and graduate students in systems biology, pharmaceutical science, and other related fields.




DNA and Histone Methylation as Cancer Targets


Book Description

This book will focus on DNA and histone methylation in epigenetics and describe how it is involved in the molecular mechanisms responsible for the development of cancer. Chapters will summarize the current knowledge of the molecular basis of DNA and histone methylation and explain how it is involved in cancer, describe the features of DNA and histone methylation associated with particular types of cancer, diagnostic/therapeutic applications, and future directions of DNA and histone methylation as cancer targets.




Epigenetics for Drug Discovery


Book Description

This book will provide an invaluable guide to epigenetics, one of the fastest moving fields in drug discovery, for medicinal chemists working in academia and in the pharmaceutical industry.




Advanced Drug Design And Development: A Medicinal Chemistry Approach


Book Description

Reporting the rapidly growing field of rational drug design, this work is composed from a selected, topical range of chapters written by specialists in each field.




Chemoinformatics Approaches to Virtual Screening


Book Description

Chemoinformatics is broadly a scientific discipline encompassing the design, creation, organization, management, retrieval, analysis, dissemination, visualization and use of chemical information. It is distinct from other computational molecular modeling approaches in that it uses unique representations of chemical structures in the form of multiple chemical descriptors; has its own metrics for defining similarity and diversity of chemical compound libraries; and applies a wide array of statistical, data mining and machine learning techniques to very large collections of chemical compounds in order to establish robust relationships between chemical structure and its physical or biological properties. Chemoinformatics addresses a broad range of problems in chemistry and biology; however, the most commonly known applications of chemoinformatics approaches have been arguably in the area of drug discovery where chemoinformatics tools have played a central role in the analysis and interpretation of structure-property data collected by the means of modern high throughput screening. Early stages in modern drug discovery often involved screening small molecules for their effects on a selected protein target or a model of a biological pathway. In the past fifteen years, innovative technologies that enable rapid synthesis and high throughput screening of large libraries of compounds have been adopted in almost all major pharmaceutical and biotech companies. As a result, there has been a huge increase in the number of compounds available on a routine basis to quickly screen for novel drug candidates against new targets/pathways. In contrast, such technologies have rarely become available to the academic research community, thus limiting its ability to conduct large scale chemical genetics or chemical genomics research. However, the landscape of publicly available experimental data collection methods for chemoinformatics has changed dramatically in very recent years. The term "virtual screening" is commonly associated with methodologies that rely on the explicit knowledge of three-dimensional structure of the target protein to identify potential bioactive compounds. Traditional docking protocols and scoring functions rely on explicitly defined three dimensional coordinates and standard definitions of atom types of both receptors and ligands. Albeit reasonably accurate in many cases, conventional structure based virtual screening approaches are relatively computationally inefficient, which has precluded them from screening really large compound collections. Significant progress has been achieved over many years of research in developing many structure based virtual screening approaches. This book is the first monograph that summarizes innovative applications of efficient chemoinformatics approaches towards the goal of screening large chemical libraries. The focus on virtual screening expands chemoinformatics beyond its traditional boundaries as a synthetic and data-analytical area of research towards its recognition as a predictive and decision support scientific discipline. The approaches discussed by the contributors to the monograph rely on chemoinformatics concepts such as: -representation of molecules using multiple descriptors of chemical structures -advanced chemical similarity calculations in multidimensional descriptor spaces -the use of advanced machine learning and data mining approaches for building quantitative and predictive structure activity models -the use of chemoinformatics methodologies for the analysis of drug-likeness and property prediction -the emerging trend on combining chemoinformatics and bioinformatics concepts in structure based drug discovery The chapters of the book are organized in a logical flow that a typical chemoinformatics project would follow - from structure representation and comparison to data analysis and model building to applications of structure-property relationship models for hit identification and chemical library design. It opens with the overview of modern methods of compounds library design, followed by a chapter devoted to molecular similarity analysis. Four sections describe virtual screening based on the using of molecular fragments, 2D pharmacophores and 3D pharmacophores. Application of fuzzy pharmacophores for libraries design is the subject of the next chapter followed by a chapter dealing with QSAR studies based on local molecular parameters. Probabilistic approaches based on 2D descriptors in assessment of biological activities are also described with an overview of the modern methods and software for ADME prediction. The book ends with a chapter describing the new approach of coding the receptor binding sites and their respective ligands in multidimensional chemical descriptor space that affords an interesting and efficient alternative to traditional docking and screening techniques. Ligand-based approaches, which are in the focus of this work, are more computationally efficient compared to structure-based virtual screening and there are very few books related to modern developments in this field. The focus on extending the experiences accumulated in traditional areas of chemoinformatics research such as Quantitative Structure Activity Relationships (QSAR) or chemical similarity searching towards virtual screening make the theme of this monograph essential reading for researchers in the area of computer-aided drug discovery. However, due to its generic data-analytical focus there will be a growing application of chemoinformatics approaches in multiple areas of chemical and biological research such as synthesis planning, nanotechnology, proteomics, physical and analytical chemistry and chemical genomics.