Biologically Inspired Underwater Propulsion and Adhesion Mechanisms


Book Description

The ultimate objective of this research is to develop an innovative underwater pipe inspection robot with both swimming and crawling capabilities as opposed to conventional in-pipe robots with wheeled designs or driven by propellers. The contents of this thesis include two different parts: a propulsion mechanism using a passive compliant tail and a reversible underwater adhesion mechanism. The propulsion mechanism is the primary concern of this research. The hypothesis of this part of research is that a continuous passive compliant tail structure with an optimized stiffness profile in its longitudinal direction along with the proper control of a single actuator can allow the undulatory motion of this mechanism to resemble real fish swimming locomotion. This approach is in contrast to conventional approaches where multiple joints are actuated to create traveling waves to emulate propulsion mechanisms of fish. Four iterations of experiments are developed in total to verify the hypothesis, take measurements and improve the performance of the propulsion mechanism. It is proven that a continuous passive compliant structure driven by a DC motor through a four bar linkage can generate sufficient propulsion to drive a moving unit forward along a guide rail. The experiments with a simple prototype demonstrate that the propulsion mechanism is promising to drive a robot forward along a prescribed path without a guide rail. It is demonstrated that the stiffness profile in the longitudinal direction is one of the critical factors that affects the performance of the propulsion mechanism. A simulation model is developed to guide the design process of the passive compliant structure, mainly to optimize its stiffness profile along the tail structure. Special measures are implemented into the experiments to extract data to compare with simulated results. The reversible underwater adhesion mechanism is another critical component of the underwater pipe inspection robot that is under development. The goal of developing a reversible underwater adhesion mechanism is to provide adequate traction to various surfaces while the robot operates in water. This reversible underwater adhesion mechanism allows a robot to stick and crawl in water pipes even across the stream. This mechanism may enable recharging capability extracting energy from kinetic energy of the pipe flow. Two generations of robot prototypes are developed to demonstrate the crawling and propulsion mechanisms.




Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems


Book Description

This book includes representative research from the state‐of‐the‐art in the emerging field of soft robotics, with a special focus on bioinspired soft robotics for underwater applications. Topics include novel materials, sensors, actuators, and system design for distributed estimation and control of soft robotic appendages inspired by the octopus and seastar. It summarizes the latest findings in an emerging field of bioinspired soft robotics for the underwater domain, primarily drawing from (but not limited to) an ongoing research program in bioinspired autonomous systems sponsored by the Office of Naval Research. The program has stimulated cross‐disciplinary research in biology, material science, computational mechanics, and systems and control for the purpose of creating novel robotic appendages for maritime applications. The book collects recent results in this area.




Physical Origin of Biological Propulsion and Inspiration for Underwater Robotic Applications


Book Description

Robotic design, especially in underwater robots, is critical to research, national defense, deep sea exploration and sea disaster rescue. Developing an advanced underwater robot, however, is complicated, as it involves propulsion, depth regulation, motion between propellers and other auxiliary system coordination, as well as sensing and feedback signals synchronization. Additionally, it is more challenging to manage the aquatic environment and guarantee the robotic design. In particular, the propulsion system could fit well in this environment and allow for efficient swimming. These challenges make the development of an underwater robot much more difficult, and finding the best solutions to building a robot in a standard and robust manner is critical to satisfying the large amount of requirements of the underwater robots in different perspectives. Aquatic creatures have developed swimming capabilities far superior in many ways to what has been achieved by nautical science and technology and have inspired alternative ideas of developing smart and advanced novel robotic mechanisms for propulsion in different fluid environments. Many bioinspired aquatic robots mimic the structure design, locomotion behaviors and even control method of their counterparts in nature and achieved great swimming performance. The further development of a more general design methodology for bioinspired underwater robots, however, has been impeded due to the diversity of biological sources for underwater propulsion. Consequently, there have been several studies attempting to understand basic propulsion principles to synchronize the biological diversity. In this dissertation, we first review the current stages and challenges of design of underwater robots. Afterwards, we provided a methodology for the design of efficient underwater robots from a biological perspective at multiple scales. To achieve this goal, we introduced the unique propulsion features of aquatic species in terms of locomotion mechanism as the swimmer increased in size from the micro/nanoscale to the macro-scale. Then, we discussed the biological propulsion principles for aquatic robotic design, including design of propeller, body, propulsion appendages, locomotion control and auxiliary system. In addition, we introduced the method for the implementation of bioinspired robots, including mechanical design, electronic engineering and system integration (Chapter 1). The following chapters show that four aquatic robots from the micro/nanoscale to the macro-scale were designed by learning unique features from biology and providing specific investigation of propulsion principle for robotic design at each scale. We validated and demonstrated the design of each robot using both mathematical model based simulation and hardware implemented robot experiments. In chapter 2, propulsion was investigated at micro/nanoscale (body length10-2m). Due to the constraints imposed at micro/nanoscale which has low Reynolds number (Re







Bio-Inspired Robotics


Book Description

This book is a printed edition of the Special Issue "Bio-Inspired Robotics" that was published in Applied Sciences




Bio-mechanisms of Swimming and Flying


Book Description

Tens of thousands of different animal species live on this planet, having survived for millions of years through adaptation and evolution, which has given them a vast variety of structures and functions. Biomechanical studies of animals swimming and flying can aid understanding of the mechanisms that enable them to move effectively and efficiently in fluids . Based on such understandings and analyses, we can aim to develop environmentally friendly machines that emulate these natu ral movements. The Earth Summit in Rio de Janeiro in 1992 agreed major treaties on biological diversity, addressing the comb ined issues of environmental protection and fair and equitable economic development. With regard to coastal environments, increasing biological diversity has begun to play an important role in reestablishing stable and sustainable ecosystems. This approach has begun to influence research into the behavior of aquatic species, as an understanding of the history of an individual aquatic species is indispensable in constructing an environmental assessment mod el that includes the physical, chemical, and biological effects of that species . From an engineering viewpoint, studying nature's biological diversity is an opportunity to reconsider mechanical systems that were systematically constructed in the wake of the Industrial Revolution. We have been accumulating knowledge of the sys tems inherent in biological creatures and using that knowledge to create new, envi ronmentally friendly technologies.




Locomotion of Bioinspired Underwater Soft Robots with Structural Compliance


Book Description

Mobile robots are commonly used to perform tasks in underwater environments that are difficult for humans to endure, such as exploration, long-duration measurements, or maintenance and repair of underwater structures. Traditional underwater robots are often bulky and disruptive to the environment around it and are often adapted from engineered systems that were designed for operation in air. However, the underwater fluid environment is significantly different from the in-air environment and motivates the development of new robot paradigms specifically to address the challenges that arise from the surrounding water. I have taken inspiration from nature, which has evolved fast and efficient mechanisms for underwater locomotion, to design soft, bioinspired walking and swimming robots. In this work, I have explored several ways to design mobile robots specifically for the underwater fluid environment. To mitigate the negative effects of flow on an underwater walking robot, I created a soft inflatable structure that can be attached to the robot to alter the lift and drag forces on the robot and increase traction in flow. To create locomotion independent of the flow on the robot, I designed soft suction discs and soft linear actuators that enable adhesive-based locomotion. By leveraging interactions with fluid, I created a steerable, shape-changing robot that uses vectored jet propulsion to swim through open water. This work has the potential to enable more efficient locomotion in underwater environments more closely resembling the capabilities of biological systems.




Biologically Inspired Robotics


Book Description

Robotic engineering inspired by biology—biomimetics—has many potential applications: robot snakes can be used for rescue operations in disasters, snake-like endoscopes can be used in medical diagnosis, and artificial muscles can replace damaged muscles to recover the motor functions of human limbs. Conversely, the application of robotics technology to our understanding of biological systems and behaviors—biorobotic modeling and analysis—provides unique research opportunities: robotic manipulation technology with optical tweezers can be used to study the cell mechanics of human red blood cells, a surface electromyography sensing system can help us identify the relation between muscle forces and hand movements, and mathematical models of brain circuitry may help us understand how the cerebellum achieves movement control. Biologically Inspired Robotics contains cutting-edge material—considerably expanded and with additional analysis—from the 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). These 16 chapters cover both biomimetics and biorobotic modeling/analysis, taking readers through an exploration of biologically inspired robot design and control, micro/nano bio-robotic systems, biological measurement and actuation, and applications of robotics technology to biological problems. Contributors examine a wide range of topics, including: A method for controlling the motion of a robotic snake The design of a bionic fitness cycle inspired by the jaguar The use of autonomous robotic fish to detect pollution A noninvasive brain-activity scanning method using a hybrid sensor A rehabilitation system for recovering motor function in human hands after injury Human-like robotic eye and head movements in human–machine interactions A state-of-the-art resource for graduate students and researchers in the fields of control engineering, robotics, and biomedical engineering, this text helps readers understand the technology and principles in this emerging field.







Springer Handbook of Robotics


Book Description

The second edition of this handbook provides a state-of-the-art overview on the various aspects in the rapidly developing field of robotics. Reaching for the human frontier, robotics is vigorously engaged in the growing challenges of new emerging domains. Interacting, exploring, and working with humans, the new generation of robots will increasingly touch people and their lives. The credible prospect of practical robots among humans is the result of the scientific endeavour of a half a century of robotic developments that established robotics as a modern scientific discipline. The ongoing vibrant expansion and strong growth of the field during the last decade has fueled this second edition of the Springer Handbook of Robotics. The first edition of the handbook soon became a landmark in robotics publishing and won the American Association of Publishers PROSE Award for Excellence in Physical Sciences & Mathematics as well as the organization’s Award for Engineering & Technology. The second edition of the handbook, edited by two internationally renowned scientists with the support of an outstanding team of seven part editors and more than 200 authors, continues to be an authoritative reference for robotics researchers, newcomers to the field, and scholars from related disciplines. The contents have been restructured to achieve four main objectives: the enlargement of foundational topics for robotics, the enlightenment of design of various types of robotic systems, the extension of the treatment on robots moving in the environment, and the enrichment of advanced robotics applications. Further to an extensive update, fifteen new chapters have been introduced on emerging topics, and a new generation of authors have joined the handbook’s team. A novel addition to the second edition is a comprehensive collection of multimedia references to more than 700 videos, which bring valuable insight into the contents. The videos can be viewed directly augmented into the text with a smartphone or tablet using a unique and specially designed app. Springer Handbook of Robotics Multimedia Extension Portal: http://handbookofrobotics.org/