Rare Diseases and Orphan Products


Book Description

Rare diseases collectively affect millions of Americans of all ages, but developing drugs and medical devices to prevent, diagnose, and treat these conditions is challenging. The Institute of Medicine (IOM) recommends implementing an integrated national strategy to promote rare diseases research and product development.







Biological Drug Products


Book Description

Tested and proven solutions to the challenges of biological drug product development Biological drug products play a central role in combating human diseases; however, developing new successful biological drugs presents many challenges, including labor intensive production processes, tighter regulatory controls, and increased market competition. This book reviews the current state of the science, offering readers a single resource that sets forth the fundamentals as well as tested and proven development strategies for biological drugs. Moreover, the book prepares readers for the challenges that typically arise during drug development, offering straightforward solutions to improve their ability to pass through all the regulatory hurdles and deliver new drug products to the market. Biological Drug Products begins with general considerations for the development of any biological drug product and then explores the strategies and challenges involved in the development of specific types of biologics. Divided into five parts, the book examines: Part 1: General Aspects Part 2: Proteins and Peptides Part 3: Vaccines Part 4: Novel Biologics Part 5: Product Administration/Delivery Each chapter has been prepared by one or more leading experts in biological drug development. Contributions are based on a comprehensive review and analysis of the current literature as well as the authors' first-hand experience developing and testing new drugs. References at the end of each chapter serve as a gateway to original research papers and reviews in the field. By incorporating lessons learned and future directions for research, Biological Drug Products enables pharmaceutical scientists and students to improve their success rate in developing new biologics to treat a broad range of human diseases.







Biologics Development


Book Description




Introduction to Biological and Small Molecule Drug Research and Development


Book Description

Introduction to Biological and Small Molecule Drug Research and Development provides, for the first time, an introduction to the science behind successful pharmaceutical research and development programs. The book explains basic principles, then compares and contrasts approaches to both biopharmaceuticals (proteins) and small molecule drugs, presenting an overview of the business and management issues of these approaches. The latter part of the book provides carefully selected real-life case studies illustrating how the theory presented in the first part of the book is actually put into practice. Studies include Herceptin/T-DM1, erythropoietin (Epogen/Eprex/NeoRecormon), anti-HIV protease inhibitor Darunavir, and more. Introduction to Biological and Small Molecule Drug Research and Development is intended for late-stage undergraduates or postgraduates studying chemistry (at the biology interface), biochemistry, medicine, pharmacy, medicine, or allied subjects. The book is also useful in a wide variety of science degree courses, in post-graduate taught material (Masters and PhD), and as basic background reading for scientists in the pharmaceutical industry. - For the first time, the fundamental scientific principles of biopharmaceuticals and small molecule chemotherapeutics are discussed side-by-side at a basic level - Edited by three senior scientists with over 100 years of experience in drug research who have compiled the best scientific comparison of small molecule and biopharmaceuticals approaches to new drugs - Illustrated with key examples of important drugs that exemplify the basic principles of pharmaceutical drug research and development




Safe and Effective Medicines for Children


Book Description

The Best Pharmaceuticals for Children Act (BPCA) and the Pediatric Research Equity Act (PREA) were designed to encourage more pediatric studies of drugs used for children. The FDA asked the IOM to review aspects of pediatric studies and changes in product labeling that resulted from BPCA and PREA and their predecessor policies, as well as assess the incentives for pediatric studies of biologics and the extent to which biologics have been studied in children. The IOM committee concludes that these policies have helped provide clinicians who care for children with better information about the efficacy, safety, and appropriate prescribing of drugs. The IOM suggests that more can be done to increase knowledge about drugs used by children and thereby improve the clinical care, health, and well-being of the nation's children.




Improving and Accelerating Therapeutic Development for Nervous System Disorders


Book Description

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.




Safety of Biologics Therapy


Book Description

This long overdue title provides a comprehensive, up-to-date, state-of-the art review of approved biologic therapies, with coverage of mechanisms of action, Indications for therapy, immunogenicity and a detailed examination of adverse effects and safety of the many and diverse therapeutic agents presented in a total of 13 chapters. It is predicted that by 2016, biologics will make up half of the world's 20 top-selling drugs and by 2018, biologic medicine sales will account for almost half of the world's 100 biggest selling drugs. Recombinant proteins dominate the growing list of the more than 200 approved biotherapeutic agents with targeted antibodies, fusion proteins and receptors; cytokines; hormones; enzymes; proteins involved in blood-clotting, homeostasis and thrombosis; vaccines; botulinum neurotoxins; and, more recently, biosimilar preparations, comprising the majority of approved biologics. Written with clinicians, other health care professionals, and researchers in mind, Safety of Biologics Therapy examines, in a single volume, the full range of issues surrounding the safety of approved biologic therapies. A good understanding of the risks and safety issues of modern biologics therapy is increasingly being demanded of all those connected with their development, handling, prescribing, administration and subsequent patient management. In addition to being of great value to clinicians in all branches of medicine, and to nurses, pharmacists and researchers, this book will prove invaluable for students taking undergraduate and graduate courses in the above disciplines and in the biomedical sciences.




Basic Principles of Drug Discovery and Development


Book Description

Basic Principles of Drug Discovery and Development presents the multifaceted process of identifying a new drug in the modern era, which requires a multidisciplinary team approach with input from medicinal chemists, biologists, pharmacologists, drug metabolism experts, toxicologists, clinicians, and a host of experts from numerous additional fields. Enabling technologies such as high throughput screening, structure-based drug design, molecular modeling, pharmaceutical profiling, and translational medicine are critical to the successful development of marketable therapeutics. Given the wide range of disciplines and techniques that are required for cutting edge drug discovery and development, a scientist must master their own fields as well as have a fundamental understanding of their collaborator's fields. This book bridges the knowledge gaps that invariably lead to communication issues in a new scientist's early career, providing a fundamental understanding of the various techniques and disciplines required for the multifaceted endeavor of drug research and development. It provides students, new industrial scientists, and academics with a basic understanding of the drug discovery and development process. The fully updated text provides an excellent overview of the process and includes chapters on important drug targets by class, in vitro screening methods, medicinal chemistry strategies in drug design, principles of in vivo pharmacokinetics and pharmacodynamics, animal models of disease states, clinical trial basics, and selected business aspects of the drug discovery process. - Provides a clear explanation of how the pharmaceutical industry works, as well as the complete drug discovery and development process, from obtaining a lead, to testing the bioactivity, to producing the drug, and protecting the intellectual property - Includes a new chapter on the discovery and development of biologics (antibodies proteins, antibody/receptor complexes, antibody drug conjugates), a growing and important area of the pharmaceutical industry landscape - Features a new section on formulations, including a discussion of IV formulations suitable for human clinical trials, as well as the application of nanotechnology and the use of transdermal patch technology for drug delivery - Updated chapter with new case studies includes additional modern examples of drug discovery through high through-put screening, fragment-based drug design, and computational chemistry