Mapping the Future of Biology


Book Description

Carving Nature at its Joints? In order to map the future of biology we need to understand where we are and how we got there. Present day biology is the realization of the famous metaphor of the organism as a bete ˆ machine elaborated by Descartes in Part V of the Discours,a realization far beyond what anyone in the seventeenth century could have im- ined. Until the middle of the nineteenth century that machine was an articulated collection of macroscopic parts, a system of gears and levers moving gasses, solids, and liquids, and causing some parts of the machine to move in response to the force produced by others. Then, in the nineteenth century, two divergent changes occurred in the level at which the living machine came to be investigated. First, with the rise of chemistry and the particulate view of the composition of matter, the forces on macroscopic machine came to be understood as the ma- festation of molecular events, and functional biology became a study of molecular interactions. That is, the machine ceased to be a clock or a water pump and became an articulated network of chemical reactions. Until the ?rst third of the twentieth century this chemical view of life, as re?ected in the development of classical b- chemistry treated the chemistry of biological molecules in much the same way as for any organic chemical reaction, with reaction rates and side products that were the consequence of statistical properties of the concentrations of reactants.




What is Life? The Next Fifty Years


Book Description

Erwin Schrödinger's book What is Life? had a tremendous influence on the development of molecular biology, stimulating scientists such as Watson and Crick to explore the physical basis of life. Much of the appeal of Schrödinger's book lay in its approach to the central problems in biology - heredity and how organisms use energy to maintain order - from a physicist's perspective. At Trinity College, Dublin a number of outstanding scientists from a range of disciplines gathered to celebrate the fiftieth anniversary of What is Life? and following Schrödinger's example fifty years previously, presented their views on the current central problems in biology. The contributors to this volume include Stephen Jay Gould, Roger Penrose, Jared Diamond, Manfred Eigen, John Maynard Smith, Christien de Duve and Lewis Wolpert. This collection is essential reading for anyone interested in biology and its future.




A Natural History of the Future


Book Description

Over the past century, our species has made unprecedented technological innovations with which we have sought to control nature. In A Natural History of the Future, biologist Rob Dunn argues that such efforts are futile. We may see ourselves as life's overlords, but we are instead at its mercy. In the evolution of antibiotic resistance, the power of natural selection to create biodiversity, and even the surprising life of the London Underground, Dunn finds laws of life that no human activity can annul. When we create artificial islands of crops, dump toxic waste, or build communities, we provide new materials for old laws to shape. Life's future flourishing is not in question. Ours is. A Natural History of the Future sets a new standard for understanding the diversity and destiny of life itself.




Eco-Evolutionary Dynamics


Book Description

The theme of this volume is to discuss Eco-evolutionary Dynamics. - Updates and informs the reader on the latest research findings - Written by leading experts in the field - Highlights areas for future investigation




A New Biology for the 21st Century


Book Description

Now more than ever, biology has the potential to contribute practical solutions to many of the major challenges confronting the United States and the world. A New Biology for the 21st Century recommends that a "New Biology" approach-one that depends on greater integration within biology, and closer collaboration with physical, computational, and earth scientists, mathematicians and engineers-be used to find solutions to four key societal needs: sustainable food production, ecosystem restoration, optimized biofuel production, and improvement in human health. The approach calls for a coordinated effort to leverage resources across the federal, private, and academic sectors to help meet challenges and improve the return on life science research in general.




Biology and the Future of Man


Book Description

A survey of the current status of all the life sciences sponsored by the National Academy of Sciences. Has sections on the biology of behaviour, ecology, diversity of life, digital computers and the life sciences, feeding mankind, environmental health, renewable resources, etc.




Opportunities in Biology


Book Description

Biology has entered an era in which interdisciplinary cooperation is at an all-time high, practical applications follow basic discoveries more quickly than ever before, and new technologiesâ€"recombinant DNA, scanning tunneling microscopes, and moreâ€"are revolutionizing the way science is conducted. The potential for scientific breakthroughs with significant implications for society has never been greater. Opportunities in Biology reports on the state of the new biology, taking a detailed look at the disciplines of biology; examining the advances made in medicine, agriculture, and other fields; and pointing out promising research opportunities. Authored by an expert panel representing a variety of viewpoints, this volume also offers recommendations on how to meet the infrastructure needsâ€"for funding, effective information systems, and other supportâ€"of future biology research. Exploring what has been accomplished and what is on the horizon, Opportunities in Biology is an indispensable resource for students, teachers, and researchers in all subdisciplines of biology as well as for research administrators and those in funding agencies.




Biology Is Technology


Book Description

“Essential reading for anyone who wishes to understand the current state of biotechnology and the opportunities and dangers it may create.” —American Scientist Technology is a process and a body of knowledge as much as a collection of artifacts. Biology is no different—and we are just beginning to comprehend the challenges inherent in the next stage of biology as a human technology. It is this critical moment, with its wide-ranging implications, that Robert Carlson considers in Biology Is Technology. He offers a uniquely informed perspective on the endeavors that contribute to current progress in this area—the science of biological systems and the technology used to manipulate them. In a number of case studies, Carlson demonstrates that the development of new mathematical, computational, and laboratory tools will facilitate the engineering of biological artifacts—up to and including organisms and ecosystems. Exploring how this will happen, with reference to past technological advances, he explains how objects are constructed virtually, tested using sophisticated mathematical models, and finally constructed in the real world. Such rapid increases in the power, availability, and application of biotechnology raise obvious questions about who gets to use it, and to what end. Carlson’s thoughtful analysis offers rare insight into our choices about how to develop biological technologies and how these choices will determine the pace and effectiveness of innovation as a public good.




Insect Biology in The Future


Book Description

Insect Biology in the Future: ""VBW 80"" contains essays presented to Sir Vincent Wigglesworth during his 80th year. Wigglesworth is fairly designated as the founding father and remarkable leader of insect physiology. His papers and other works significantly contribute to this field of study. This book, dedicated to him, underlines the value of insect material in approaching a wide spectrum of biological issues. The essays in this book tackle the insects' physiology, including their evolution and dominance. The papers also discuss the various avenues of water loss and gain as interrelated components of overall water balance in land arthropods. This reference suggests possible areas for further research mainly at the whole animal level. It also describes the fat body, hemolymph, endocrine control of vitellogenin synthesis, reproduction, growth, hormones, chemistry, defense, and survival of insects. Other topics of importance include cell communication and pattern formation in insects; plant-insect interaction; and insecticides.




Regenesis


Book Description

A Harvard biologist and master inventor explores how new biotechnologies will enable us to bring species back from the dead, unlock vast supplies of renewable energy, and extend human life. In Regenesis, George Church and science writer Ed Regis explore the possibilities of the emerging field of synthetic biology. Synthetic biology, in which living organisms are selectively altered by modifying substantial portions of their genomes, allows for the creation of entirely new species of organisms. These technologies-far from the out-of-control nightmare depicted in science fiction-have the power to improve human and animal health, increase our intelligence, enhance our memory, and even extend our life span. A breathtaking look at the potential of this world-changing technology, Regenesis is nothing less than a guide to the future of life.