Living Systems
Author : James G. Miller
Publisher :
Page : 120 pages
File Size : 28,87 MB
Release : 1971
Category : Biology
ISBN :
Author : James G. Miller
Publisher :
Page : 120 pages
File Size : 28,87 MB
Release : 1971
Category : Biology
ISBN :
Author : C. H. Waddington
Publisher : Routledge
Page : 334 pages
File Size : 18,67 MB
Release : 2017-09-08
Category : Science
ISBN : 1351297147
Biological Processes in Living Systems is the fourth and final volume of the Toward a Theoretical Biology series. It contains essays that deal in detail with particular biological processes: morphogenesis of pattern, the development of neuronal networks, evolutionary processes, and others. The main thrust of this volume brings relevance to the general underlying nature of living systems. Faced with trying to understand how the complexity of molecular microstates leads to the relative simplicity of phenome structures, Waddington-on behalf of his colleagues-stresses on the structure of language as a paradigm for a theory of general biology. This is language in an imperative mood: a set of symbols, organized by some form of generative grammar, making possible the conveyance of commands for action to produce effects on the surroundings of the emitting and the receiving entities. "Biology," he writes, "is concerned with algorithm and program." Among the contributions in this volume are: "The Riemann-Hugoniot Catastrophe and van der Waals Equation," David H. Fowler; "Differential Equations for the Heartbeat and Nerve Impulse," E. Christopher Zeeman; "Structuralism and Biology," Rene Thom; "The Concept of Positional Information and Pattern Formation," Lewis Wolpert; "Pattern Formation in Fibroblast Cultures," Tom Elsdale; "Form and Information," C. H. Waddington; "Organizational Principles for Theoretical Neurophysiology," Michael A. Arbib; "Stochastic Models of Neuroelectric Activity," Jack D. Cowan. Biological Processes in Living Systems is a pioneering volume by recognized leaders in an ever-growing field.
Author : George Terzis
Publisher : MIT Press
Page : 459 pages
File Size : 20,41 MB
Release : 2011
Category : Business & Economics
ISBN : 0262201747
The informational nature of biological organization, at levels from the genetic and epigenetic to the cognitive and linguistic. Information shapes biological organization in fundamental ways and at every organizational level. Because organisms use information--including DNA codes, gene expression, and chemical signaling--to construct, maintain, repair, and replicate themselves, it would seem only natural to use information-related ideas in our attempts to understand the general nature of living systems, the causality by which they operate, the difference between living and inanimate matter, and the emergence, in some biological species, of cognition, emotion, and language. And yet philosophers and scientists have been slow to do so. This volume fills that gap. Information and Living Systems offers a collection of original chapters in which scientists and philosophers discuss the informational nature of biological organization at levels ranging from the genetic to the cognitive and linguistic. The chapters examine not only familiar information-related ideas intrinsic to the biological sciences but also broader information-theoretic perspectives used to interpret their significance. The contributors represent a range of disciplines, including anthropology, biology, chemistry, cognitive science, information theory, philosophy, psychology, and systems theory, thus demonstrating the deeply interdisciplinary nature of the volume's bioinformational theme.
Author : Fabrizio Cleri
Publisher : Springer
Page : 635 pages
File Size : 23,78 MB
Release : 2016-10-08
Category : Science
ISBN : 3319306472
In this book, physics in its many aspects (thermodynamics, mechanics, electricity, fluid dynamics) is the guiding light on a fascinating journey through biological systems, providing ideas, examples and stimulating reflections for undergraduate physics, chemistry and life-science students, as well as for anyone interested in the frontiers between physics and biology. Rather than introducing a lot of new information, it encourages young students to use their recently acquired knowledge to start seeing the physics behind the biology. As an undergraduate textbook in introductory biophysics, it includes the necessary background and tools, including exercises and appendices, to form a progressive course. In this case, the chapters can be used in the order proposed, possibly split between two semesters. The book is also an absorbing read for researchers in the life sciences who wish to refresh or go deeper into the physics concepts gleaned in their early years of scientific training. Less physics-oriented readers might want to skip the first chapter, as well as all the "gray boxes" containing the more formal developments, and create their own á-la-carte menu of chapters.
Author : Andreas Wagner
Publisher : Princeton University Press
Page : 383 pages
File Size : 30,54 MB
Release : 2007-07-22
Category : Science
ISBN : 0691134049
All living things are remarkably complex, yet their DNA is unstable, undergoing countless random mutations over generations. Despite this instability, most animals do not grow two heads or die, plants continue to thrive, and bacteria continue to divide. Robustness and Evolvability in Living Systems tackles this perplexing paradox. The book explores why genetic changes do not cause organisms to fail catastrophically and how evolution shapes organisms' robustness. Andreas Wagner looks at this problem from the ground up, starting with the alphabet of DNA, the genetic code, RNA, and protein molecules, moving on to genetic networks and embryonic development, and working his way up to whole organisms. He then develops an evolutionary explanation for robustness. Wagner shows how evolution by natural selection preferentially finds and favors robust solutions to the problems organisms face in surviving and reproducing. Such robustness, he argues, also enhances the potential for future evolutionary innovation. Wagner also argues that robustness has less to do with organisms having plenty of spare parts (the redundancy theory that has been popular) and more to do with the reality that mutations can change organisms in ways that do not substantively affect their fitness. Unparalleled in its field, this book offers the most detailed analysis available of all facets of robustness within organisms. It will appeal not only to biologists but also to engineers interested in the design of robust systems and to social scientists concerned with robustness in human communities and populations.
Author : Vladimir B Bajic
Publisher : World Scientific
Page : 799 pages
File Size : 19,18 MB
Release : 2005-06-01
Category : Science
ISBN : 1783260270
Information processing and information flow occur in the course of an organism's development and throughout its lifespan. Organisms do not exist in isolation, but interact with each other constantly within a complex ecosystem. The relationships between organisms, such as those between prey or predator, host and parasite, and between mating partners, are complex and multidimensional. In all cases, there is constant communication and information flow at many levels.This book focuses on information processing by life forms and the use of information technology in understanding them. Readers are first given a comprehensive overview of biocomputing before navigating the complex terrain of natural processing of biological information using physiological and analogous computing models. The remainder of the book deals with “artificial” processing of biological information as a human endeavor in order to derive new knowledge and gain insight into life forms and their functioning. Specific innovative applications and tools for biological discovery are provided as the link and complement to biocomputing.Since “artificial” processing of biological information is complementary to natural processing, a better understanding of the former helps us improve the latter. Consequently, readers are exposed to both domains and, when dealing with biological problems of their interest, will be better equipped to grasp relevant ideas.
Author : Kunihiko Kaneko
Publisher : Springer
Page : 377 pages
File Size : 44,56 MB
Release : 2006-09-14
Category : Science
ISBN : 3540326677
This book examines life not from the reductionist point of view, but rather asks the questions: what are the universal properties of living systems, and how can one construct from there a phenomenological theory of life that leads naturally to complex processes such as reproductive cellular systems, evolution and differentiation? The presentation is relatively non-technical to appeal to a broad spectrum of students and researchers.
Author : Philip Nelson
Publisher : Macmillan Higher Education
Page : 365 pages
File Size : 29,66 MB
Release : 2014-12-20
Category : Science
ISBN : 1319036902
Written for intermediate-level undergraduates pursuing any science or engineering major, Physical Models of Living Systems helps students develop many of the competencies that form the basis of the new MCAT2015. The only prerequisite is first-year physics. With the more advanced "Track-2" sections at the end of each chapter, the book can be used in graduate-level courses as well.
Author : David D. Rutstein
Publisher : MIT Press (MA)
Page : 344 pages
File Size : 13,41 MB
Release : 1970
Category : Medical
ISBN :
This book outlines for the first time a sound plan for interrelating the physical and engineering sciences and mathematics with biology and medicine. The walls of narrowing specialization that have kept these disciplines apart are broken down. The proposed program points up the need for an administrative structure to aid the flow of concepts, ideas, knowledge, and technology among those concerned, both within and without the university. The kinds of experts needed to bridge the existing gap between the two groups of disciplines are defined. Educational programs are outlined for full-time specialists, research participants, and practitioners in both engineering and medicine. A careful description is given of the stepwise process, including interaction with industry to apply development in the engineering sense to biology and medicine. A detailed example of the application of systems analysis and operations research to the development of a specific medical care program is also included. This book is a distillate of the general principles learned during the exploration of a joint program between Harvard University and the Massachusetts Institute of Technology, which was summarized by the authors in a Report to the National Academy of Engineering. The authors recognize the impossibility of providing on their own the authoritative grasp necessary to provide specific recommendations for the future in the many field comprised by engineering and living systems. Cooperation was obtained of outstanding experts on the two faculties, who prepared sixteen task group reports under the following headings: artificial internal organs; bioengineering curricula; biological control systems; continuing education; diagnostic instrumentation; diagnostic processes; image processing and visualization techniques; medical care microsystems; neurophysiology; organ and cell culture and storage; physiological monitoring; physiological systems analysis; regionalization of health services (macrosystems); sensory aids; skeletal prostheses; and subcellular engineering. The task group reports, included in this book, provide the documentation for the general conclusions of the authors. This book supplements existing medical programs with a new research approach to increase fundamental knowledge, and points the way to better medical care through more efficient application of engineering, technology, and systems development.
Author : Jesper Hoffmeyer
Publisher : Springer Science & Business Media
Page : 292 pages
File Size : 49,29 MB
Release : 2008-02-01
Category : Science
ISBN : 1402067062
Gregory Bateson’s contribution to 20th century thinking has appealed to scholars from a wide range of fields dealing in one way or another with aspects of communication and epistemology. A number of his insights were taken up and developed further in anthropology, psychology, evolutionary biology and communication theory. But the large, trans-disciplinary synthesis that, in his own mind, was his major contribution to science received little attention from the mainstream scientific communities. This book represents a major attempt to revise this deficiency. Scholars from ecology, biochemistry, evolutionary biology, cognitive science, anthropology and philosophy discuss how Bateson's thinking might lead to a fruitful reframing of central problems in modern science. Most important perhaps, Bateson's bioanthropology is shown to play a key role in developing the set of ideas explored in the new field of biosemiotics. The idea that organismic life is indeed basically semiotic or communicative lies at the heart of the biosemiotic approach to the study of life. The only book of its kind, this volume provides a key resource for the quickly-growing substratum of scholars in the biosciences, philosophy and medicine who are seeking an elegant new approach to exploring highly complex systems.