Biology of Populus and Its Implications for Management and Conservation


Book Description

"Poplar is increasingly recognized as an excellent model tree for the study of tree growth and its underlying physiology and genetics. By studying trees of the genus Populus (poplars, cottonwoods, aspens), which in their native ecosystems play a major role in the re-colonization of sites after disturbances, new insights have been gained into plantation culture and the development of improved cultivars. Of the 20 chapters in this publication, editored by an international group of researchers, one section deals with systematics, genetics, genetic manipulation and biotic interactions of Populus, while the other deals with stress response and the physiology of growth and productivity" --










Poplars and Willows


Book Description

Poplars and willows form an important component of forestry and agricultural systems, providing a wide range of wood and non-wood products. This book synthesizes research on poplars and willows, providing a practical worldwide overview and guide to their basic characteristics, cultivation and use, issues, problems and trends. Prominence is given to environmental benefits and the importance of poplar and willow cultivation in meeting the needs of people and communities, sustainable livelihoods, land use and development.




Genetics and Genomics of Populus


Book Description

Genetics and Genomics of Populus provides an indepth description of the genetic and genomic tools and approaches for Populus, examines the biology that has been elucidated using genomics, and looks to the future of this unique model plant. This volume is designed to serve both experienced Populus researchers and newcomers to the field. Contributors to the volume are a blend of researchers, some who have spent most of their research career on Populus and others that have moved to Populus from other model systems. Research on Populus forms a useful complement to research on Arabidopsis. In fact, many plant species found in nature are – in terms of the life history and genetics – more similar to Populus than to Arabidopsis. Thus, the genetic and genomic strategies and tools developed by the Populus community, and showcased in this volume, will hopefully provide inspiration for researchers working in other, less well developed, systems.




Forest Trees


Book Description

Forest trees cover one third of the global land surface, constitute many ecosystems, and play a pivotal role in the world economy. This volume details Populus trees, pines, Fagaceae trees, eucalypts, spruces, Douglas fir and black walnut, and offers a first-ever detailed review of Cryptomeria japonica. It thoroughly discusses innovative strategies to address the inherent problems of genome analysis of tree species.




Genetics, Genomics and Breeding of Poplar


Book Description

Written by researchers representing six countries and 28 institutions, this book highlights the development of the genus Populus as a model organism for tree genomics. Reflecting an impressive depth of coverage, the contributors' thorough reviews and analyses of Populus genomics provide insight into future discoveries about the basic biology of thi







Forest BioEnergy Production


Book Description

For thousands of years, forest biomass or wood has been among the main energy sources of humans around the world. Since the industrial revolution, fossil fuels have replaced wood and become the dominant source of energy. The use of fossil fuels has the disadvantage of increasing atmospheric concentrations of greenhouse gases (GHGs), especially carbon dioxide (CO2), with the consequent warming of global climate and changes in precipitation. In this context, the substitution of fossil fuels with renewable energy sources like forest biomass is among the ways to mitigate climate change. This book summarizes recent experiences on how to manage forest land to produce woody biomass for energy use and what are the potentials to mitigate climate change by substituting fossil fuels in energy production. In this context, the book addresses how management can affect the supply of energy biomass using short-rotation forestry and the conventional forestry applying long rotations. Furthermore, the book outlines the close interaction between the ecological systems and industrial systems, which controls the carbon cycle between the atmosphere and biosphere. In this context, sustainable forest management is a key to understand and control indirect carbon emissions due to the utilization of forest biomass (e.g. from management, harvesting and logistics, and ecosystem processes), which are often omitted in assessing the carbon neutrality of energy systems based on forest biomass. The focus in this book is on forests and forestry in the boreal and temperate zones, particularly in Northern Europe, where the woody biomass is widely used in the energy industry for producing energy.