Bioluminescence and Fluorescence for in Vivo Imaging


Book Description

Bioluminescence methods are gaining increased attention due to their sensitivity, selectivity, and simplicity, along with the fact that bioluminescence can be monitored bothin vitroandin vivo. This book introduces bioluminescence and fluorescence systems, along with the principles of their application forin vivoimaging of intracellular processes, and covers recent developments in optical (bioluminescence and fluorescence) imaging in cell biology. This book is intended for scientists and students involved in basic cell physiology research, as well as industry professionals, engineers, and managers involved in drug discovery and pre-clinical drug development. It discusses the practical aspects of luminescencein vivoimaging for monitoring intracellular processes. While some basic knowledge of biochemistry and biophysics is preferable, the book includes a brief review of fundamental principles to allow those not familiar with these disciplines to grasp basic concepts.




Handbook of In Vivo Chemistry in Mice


Book Description

Provides timely, comprehensive coverage of in vivo chemical reactions within live animals This handbook summarizes the interdisciplinary expertise of both chemists and biologists performing in vivo chemical reactions within live animals. By comparing and contrasting currently available chemical and biological techniques, it serves not just as a collection of the pioneering work done in animal-based studies, but also as a technical guide to help readers decide which tools are suitable and best for their experimental needs. The Handbook of In Vivo Chemistry in Mice: From Lab to Living System introduces readers to general information about live animal experiments and detection methods commonly used for these animal models. It focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release. Topics include: currently available mouse models; biocompatible fluorophores; radionuclides for radiodiagnosis/radiotherapy; live animal imaging techniques such as positron emission tomography (PET) imaging; magnetic resonance imaging (MRI); ultrasound imaging; hybrid imaging; biocompatible chemical reactions; ligand-directed nucleophilic substitution chemistry; biorthogonal prodrug release strategies; and various selective targeting strategies for live animals. -Completely covers current techniques of in vivo chemistry performed in live animals -Describes general information about commonly used live animal experiments and detection methods -Focuses on chemistry-based techniques to develop selective in vivo targeting methodologies, as well as strategies for in vivo chemistry and drug release -Places emphasis on material properties required for the development of appropriate compounds to be used for imaging and therapeutic purposes in preclinical applications Handbook of In Vivo Chemistry in Mice: From Lab to Living System will be of great interest to pharmaceutical chemists, life scientists, and organic chemists. It will also appeal to those working in the pharmaceutical and biotechnology industries.




Imaging from Cells to Animals In Vivo


Book Description

This book offers an overview of imaging techniques used to investigate cells and tissue in their native environment. It covers the range of imaging approaches used, as well as the application of those techniques to the study of biological processes in cells and whole tissues within living organisms.




Tuberculosis Host-Pathogen Interactions


Book Description

This book summarizes the progress in studies of tuberculosis host-pathogen interactions from several perspectives: molecular microbiology, immunology, animal models, clinical studies, epidemiology, and drug discovery. Tuberculosis (TB) remains a severe global public health problem. Complex interactions between environmental, microbial and host factors lead to clinically relevant infections. Studies on bacterial virulence, host-genetic, and immunological factors contributing to the susceptibility to TB provide an ever-growing foundation of knowledge that is critical to finding new interventions. Studies of immune mechanisms against M. tuberculosis infection have identified immunological markers associated with specific phenotypes in the host, providing insight into how they may be used to augment current treatment strategies. Recent advances in diagnosis, therapeutics and vaccines, as well as basic-research oriented studies have shed light on the development of new directions for prevention, treatment and control of TB. Improved understanding of the interplay between the bacterium and host is a key component of reducing incidence worldwide.




Bioluminescence: Chemical Principles And Methods (3rd Edition)


Book Description

This book is the bible of bioluminescence and a must-read not only for the students but for those who work in various fields relating to bioluminescence. It summarizes current structural information on all known bioluminescent systems in nature, from well-studied ones to those that have been seldom investigated.This book remains an important source of chemical knowledge on bioluminescence and, since the second edition's publication in 2012, has been revised to include major developments in two systems: earthworm Fridericia and higher fungi whose luciferins have been elucidated and synthesized. These two new luciferins represent an essential addition to seven previously known, with fully rewritten sections covering this new subject matter.




Small Animal Imaging


Book Description

This textbook is a practical guide to the use of small animal imaging in preclinical research that will assist in the choice of imaging modality and contrast agent and in study design, experimental setup, and data evaluation. All established imaging modalities are discussed in detail, with the assistance of numerous informative illustrations. While the focus of the new edition remains on practical basics, it has been updated to encompass a variety of emerging imaging modalities, methods, and applications. Additional useful hints are also supplied on the installation of a small animal unit, study planning, animal handling, and cost-effective performance of small animal imaging. Cross-calibration methods and data postprocessing are considered in depth. This new edition of Small Animal Imaging will be an invaluable aid for researchers, students, and technicians involved in research into and applications of small animal imaging.




Bioluminescence and Chemiluminescence


Book Description

Bioluminescence and Chemiluminescence: Basic Chemistry and Analytical Applications is a compendium of papers presented at the second International Symposium on Analytical Applications of Bioluminescene and Chemiluminescence in San Diego, California on August 26-28, 1980. Part I deals with chemilunescence and excited states including topics on the spectroscopy of the solvent cage — generation and characteristics of the excited state and the three features of chemi- and bioluminescence. Part II deals with events prior to producing luminol-dependent chemiluminescence; this part also examines the effects of stimulants on membrane potential. Part III discusses bacterial bioluminescence and analyzes the properties of a lumazine protein from a bioluminescent bacterium. This part also analyzes accessory enzymes responsible for such bacterial bioluminescence. Part IV examines the chemistry of firefly bioluminescence and presents the formula of three reactions catalyzed by firefly luciferase. Part V analyzes bioluminescence from other sources such as the earthworm and land snails. Part VI discusses the applications of bioluminescence in clinical chemistry, soil science, and marine biology. Part VII deals with the future uses of bioluminescence, while Part VIII is an abstract of other papers dealing with this subject. This collection can be helpful for biologists, zoologists, micro-biologists, marine biologists, and researchers dealing with bio-chemistry and related disciplines.




Tissue Optics


Book Description

This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology.




Methods in Cellular Imaging


Book Description

Advances in technology have revolutionized the development of light microscopy techniques in biomedical research, thus improving visualization of the microstructure of cells and tissues under physiological conditions. Fluorescence microscopy methods are non-contact and non-invasive and provide high spatial and temporal resolution that other laboratory techniques cannot. This well-illustrated book targets graduate students and scientists who are new to the state-of-the-art fluorescence microscopy techniques used in biological and clinical imaging. It explains basic concepts and imaging procedures for wide-field, confocal, multiphoton excitation, fluorescence resonance energy transfer (FRET), lifetime imaging (FLIM), spectral imaging, fluorescence recovery after photobleaching (FRAP), optical tweezers, total internal reflection, high spatial resolution atomic force microscopy (AFM), and bioluminescence imaging for gene expression. The usage of these techniques in various biological applications, including calcium, pH, membrane potential, mitochondrial signaling, protein-protein interactions under various physiological conditions, and deep tissue imaging, is clearly presented. The authors describe the approaches to selecting epifluorescence microscopy, the detectors, and the image acquisition and processing software for different biological applications. Step-by-step directions on preparing different digital formats for light microscopy images on websites are also provided.




In Vivo Imaging in Pharmacological Research


Book Description

The discovery and development of a biological active molecule with therapeutic properties is an ever increasing complex task, highly unpredictable at the early stages and marked, in the end, by high rates of failure. As a consequence, the overall process leading to the production of a successful drug is very costly. The improvement of the net outcome in drug discovery and development would require, amongst other important factors, a good understanding of the molecular events that characterize the disease or pathology in order to better identify likely targets of interest, to optimize the interaction of an active agent (small molecule or macromolecule of natural or synthetic origin) with those targets, and to facilitate the study of the pharmacokinetics, pharmacodynamics and toxicity of an active agent in suitable models and in human subjects. The objective of this Research Topic is to highlight new developments and applications of imaging techniques with the objective of performing pharmacological studies in vivo, in animal models and in humans. In the domain of drug discovery, the pharmacological and biomedical questions constitute the center of attention. In this sense, it is fundamental to keep in mind the strengths and limitations of each analytical or imaging technique. At the end, the judicious application of the technique with the aim of supporting the search for answers to manifold questions arising during a long and painstaking path provides a continuous role for imaging within the complex area of drug discovery and development.