Biomass and Biowaste


Book Description

Valorization of biomass focuses on the transformation of biomass molecules into substitutes for petroleum-based chemicals that can be reused. Valorizing Biomass and Biowaste discusses the chemistry and composition of alternative biomass sources. Later chapters will introduce new markets and discuss efficient, green methods of process intensification and catalysis in order to increase conversion of biomass/biowastes.




Biomass, Biofuels, Biochemicals


Book Description

Microbial Fermentation of Biowastes summarizes new advances in the development of various strategies for enhanced microbial fermentation for organic waste conversion to bioenergy/biochemicals, and for biodegradation of plastic waste. Sections cover principles of additive strategies, multi-stage bioreactors, microbial bioaugmentation strategies, genetically engineered microorganisms, co-digestion strategies, feedstock pre-treatment strategies, enzyme technologies, and hybrid technologies methods. In addition, the book reviews progress in the conversion of common wastes to bioenergy and biochemicals via enhanced anaerobic digestion, also summarizing the significant progress achieved on enhancing anaerobic digestion via additive strategy, multi-stage bioreactor strategy, microbial bioaugmentation strategy, genetic engineering approach, and much more. Includes enhancing strategies for microbial fermentation technologies for biowastes conversion to bioenergy and biochemicals Provides progress on bioenergy/resource recovery from common biowastes, including food waste, agricultural waste, manure, wastewater and algal residues Includes microbial biodegradation of plastic waste




Utilization of Waste Biomass in Energy, Environment and Catalysis


Book Description

Biomass finds its application as feedstock to produce biofuels and other value-added products, which finds usage in energy and environmental areas with particular focus on bioenergy production from different biomass and high-volume, medium-value industrial products. This book investigates problems of controlled synthesis of these materials and the effect of their morphological, physical, and chemical characteristics on their adsorption or desorption capacity and recent progress in green catalysts derived from biomass for various catalytic applications. Socioeconomic impacts on environment and climate regarding waste biomass are discussed as well. Features Covers recent progress on green catalysts derived from biomass Explores the biomass conversion to different resources Introduces the utilization of biowaste in environmental aspects Discusses the biomass applications in different types of energy Proposes microbial waste biomass as a resource of renewable energy This book is aimed at professionals and senior undergraduate students in environmental sciences, energy studies, and environmental and chemical engineering.




Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value


Book Description

Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value examines the use of biomass as a raw material, including terrestrial and aquatic sources to obtain extracts (e.g. polyphenols), biofuels, and/or intermediates (furfural, levulinates) through chemical and biochemical processes. The book also covers the production of natural polymers using biomass and the biosynthetic process, cellulose modified by biochemical and chemical methods, and other biochemicals that can be used in the synthesis of various pharmaceuticals. Featuring case studies, discussions of sustainability, and nanomedical, biomedical, and pharmaceutical applications, Biomass as Renewable Raw Material to Obtain Bioproducts of High-tech Value is a crucial resource for biotechnologists, biochemical engineers, biochemists, microbiologists, and research students in these areas, as well as entrepreneurs, policy makers, stakeholders, and politicians. - Reviews biomass resources and compounds with bioactive properties - Describes chemical and biochemical processes for creating biofuels from biomass - Outlines production of polysaccharides and cellulose derivatives - Features applications in the fields of medicine and pharmacy




Opportunities for Biomass and Organic Waste Valorisation


Book Description

Following an active science-meets-industry approach on dealing with biomass and organics waste streams, this timely book foregrounds key issues facing South African policy makers, industry practitioners and scholars. The editors drew together a wide pool of experts in the biomass and organic valorisation industry and research, offering the most recent research, development and innovation undertaken by South African universities and science councils. Spanning twelve chapters and divided into the following four key parts, the book offers solutions to industry and research on: Quantifying organic waste: An overview of potential sources and volumes is offered, with an identification and characterisation of solid biowaste residues. Biological treatment, covering the latest norms and standards; a biorefinery approach for the sugar industry; an integrated waste management approach for municipal sewage treatment; biogas production from abattoir waste; optimisation of biogas production from animal waste; and integrated bioremediation and beneficiation of bio-based waste. Mechanical and chemical treatment, covering the beneficiation of sawdust waste; developing sustainable biobased polymer and bio-nanocomposite materials; and the valorisation of waste mango seeds. Thermal treatment, which evaluates different municipal solid waste recycling targets in terms of energy recovery and CO2 reduction.




Handbook on Characterization of Biomass, Biowaste and Related By-products


Book Description

This book provides authoritative information, techniques and data necessary for the appropriate understanding of biomass and biowaste (understood as contaminated biomass) composition and behaviour while processed in various conditions and technologies. Numerous techniques for characterizing biomass, biowaste and by-product streams exist in literature. However, there lacks a reference book where these techniques are gathered in a single book, although such information is in increasingly high demand. This handbook provides a wealth of characterization methods, protocols, standards, databases and references relevant to various biomass, biowaste materials and by-products. It specifically addresses sampling and preconditioning methods, extraction techniques of elements and molecules, as well as biochemical, mechanical and thermal characterization methods. Furthermore, advanced and innovative methods under development are highlighted. The characterization will allow the analysis, identification and quantification of molecules and species including biomass feedstocks and related conversion products. The characterization will also provide insight into physical, mechanical and thermal properties of biomass and biowaste as well as the resulting by-products.




Bioenergy Production by Anaerobic Digestion


Book Description

Interest in anaerobic digestion (AD), the process of energy production through the production of biogas, has increased rapidly in recent years. Agricultural and other organic waste are important substrates that can be treated by AD. This book is one of the first to provide a broad introduction to anaerobic digestion and its potential to turn agricultural crops or crop residues, animal and other organic waste, into biomethane. The substrates used can include any non-woody materials, including grass and maize silage, seaweeds, municipal and industrial wastes. These are all systematically reviewed in terms of their suitability from a biological, technical and economic perspective. In the past the technical competence and high capital investment required for industrial-scale anaerobic digesters has limited their uptake, but the authors show that recent advances have made smaller-scale systems more viable through a greater understanding of optimising bacterial metabolism and productivity. Broader issues such as life cycle assessment and energy policies to promote AD are also discussed.




Clean Energy and Resources Recovery


Book Description

Clean Energy and Resource Recovery from Biomass Wastes, Volume 1 presents the technological options, both conventional and advanced, for energy and resources recovery from all types of organic wastes. The book addresses municipal and industrial sludges, municipal solid waste, agro-residue, animal wastes, industrial waste, forestry residue, and algal biomass, and provides a global overview of biomass waste production, waste handling issues and related GHG emissions and climate change, legislative waste management guidelines, biomass composition, and conventional methods for biomass waste treatment. For each biomass waste the chapters will cover energy and bio-based products recovery, pre-treatment methods, process microbiology, community dynamics, co-digestion, reactor design and configuration, and techno-economic evaluation. Case studies on upscaling technology and pilot and industry scale implementation are included, alongside step-by-step calculations that integrate practical field data and regulatory requirements into the environmental design process. Finally, future trends and developments in advanced biotechnological concepts for biomass waste processing and management are discussed. Clean Energy and Resource Recovery from Biomass Wastes, Volume 1 provides an ideal reference for graduate students and researchers interested in bioenergy and renewable energy, and environmental engineers and industry practitioners involved in waste management and resource recovery. Comprehensive coverage of all treatment technologies from waste biomass for bioenergy and related bio-products Provides innovative strategies to increase the efficiency of anaerobic digestion, including during pre- and post-treatment Includes industry case studies showing successful implementation processes and strategies




Biogas from Waste and Renewable Resources


Book Description

Written as a practical introduction to biogas plant design and operation, this book fills a huge gap by presenting a systematic guide to this emerging technology -- information otherwise only available in poorly intelligible reports by US governmental and other official agencies. The author draws on teaching material from a university course as well as a wide variety of industrial biogas projects he has been involved with, thus combining didactical skill with real-life examples. Alongside biological and technical aspects of biogas generation, this timely work also looks at safety and legal aspects as well as environmental considerations.




Biowaste and Biological Waste Treatment


Book Description

With growing public pressure and increasingly stringent environmental legislation, the waste industry is now being called upon to develop more sustainable methods of dealing with refuse. Coupled with moves to reduce reliance on landfill as a disposal route, biological treatment will increasingly become adopted as a standard requirement for the vast majority of putrescible wastes. Biowaste and Biological Waste Treatment examines the present, and likely future, state of biological waste treatment. The book falls naturally into three parts. The first covers the nature of biowaste, waste treatment in general and the regulatory framework which governs it. The second looks at the technologies and approaches available, while the final part examines the various policy questions and local, social and economic factors which affect the implementation of biowaste initiatives.