Recent Advances in Thermochemical Conversion of Biomass


Book Description

This book provides general information and data on one of the most promising renewable energy sources: biomass for its thermochemical conversion. During the last few years, there has been increasing focus on developing the processes and technologies for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular to develop low-cost technologies. This book provides date-based scientific information on the most advanced and innovative processing of biomass as well as the process development elements on thermochemical processing of biomass for the production of biofuels and bio-products on (biomass-based biorefinery). The conversion of biomass to biofuels and other value-added products on the principle biorefinery offers potential from technological perspectives as alternate energy. The book covers intensive R&D and technological developments done during the last few years in the area of renewable energy utilizing biomass as feedstock and will be highly beneficial for the researchers, scientists and engineers working in the area of biomass-biofuels- biorefinery. - Provides the most advanced and innovative thermochemical conversion technology for biomass - Provides information on large scales such as thermochemical biorefinery - Useful for researchers intending to study scale up - Serves as both a textbook for graduate students and a reference book for researchers - Provides information on integration of process and technology on thermochemical conversion of biomass




Biorefining of Biomass to Biofuels


Book Description

This volume focuses on the prospects of the conversion of biomass into biofuels including ethanol, butanol, biogas, biohydrogen, biodiesel, syn-gas and other useful products. Biomass-derived fuels have gained tremendous attention worldwide. However, due to high raw material and processing costs, biofuels produced from lignocelluloses have been found to be more expensive than conventional fuels. Therefore, a concept of biorefining has been introduced, where more than one product or each and every component of biomass may be derived into useful products in a manner of petroleum refinery.




Biomass Conversion


Book Description

The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.




Thermochemical Processing of Biomass


Book Description

Thermochemical pathways for biomass conversion offer opportunities for rapid and efficient processing of diverse feedstocks into fuels, chemicals and power. Thermochemical processing has several advantages relative to biochemical processing, including greater feedstock flexibility, conversion of both carbohydrate and lignin into products, faster reaction rates, and the ability to produce a diverse selection of fuels. Thermochemical Processing of Biomass examines the large number of possible pathways for converting biomass into fuels, chemicals and power through the use of heat and catalysts. The book presents a practical overview of the latest research in this rapidly developing field, highlighting the fundamental chemistry, technical applications and operating costs associated with thermochemical conversion strategies. Bridging the gap between research and practical application, this book is written for engineering professionals in the biofuels industry, as well as academic researchers working in bioenergy, bioprocessing technology and chemical engineering. Topics covered include: Combustion Gasification Fast Pyrolysis Hydrothermal Processing Upgrading Syngas and Bio-oil Catalytic Conversion of Sugars to Fuels Hybrid Thermochemical/Biochemical Processing Economics of Thermochemical Conversion For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs




Technologies for Biochemical Conversion of Biomass


Book Description

Technologies for Biochemical Conversion of Biomass introduces biomass biochemical conversion technology, including the pretreatment platform, enzyme platform, cell refining platform, sugar platform, fermentation platform, and post-treatment platform. Readers will find a systematic treatment, not only of the basics of biomass biochemical conversion and the introduction of each strategy, but also of the current advances of research in this area. Researchers will find the key problems in each technology platform for biomass biochemical conversion identified and solutions offered. This valuable reference book features new scientific research and the related industrial application of biomass biochemical conversion technology as the main content, and then systematically introduces the basic principles and applications of biomass biochemical conversion technology. - Combines descriptions of these technologies to provide strategies and a platform for biochemical conversion in terms of basic knowledge, research advances, and key problems - Summarizes models of biomass biochemical conversion for multiple products - Presents products of biomass biochemical conversion from C1 to C10




The Role of Green Chemistry in Biomass Processing and Conversion


Book Description

Sets the stage for the development of sustainable, environmentally friendly fuels, chemicals, and materials Taking millions of years to form, fossil fuels are nonrenewable resources; it is estimated that they will be depleted by the end of this century. Moreover, the production and use of fossil fuels have resulted in considerable environmental harm. The generation of environmentally friendly energy from renewable sources such as biomass is therefore essential. This book focuses on the integration of green chemistry concepts into biomass processes and conversion in order to take full advantage of the potential of biomass to replace nonsustainable resources and meet global needs for fuel as well as other chemicals and materials. The Role of Green Chemistry in Biomass Processing and Conversion features contributions from leading experts from Asia, Europe, and North America. Focusing on lignocellulosic biomass, the most abundant biomass resource, the book begins with a general introduction to biomass and biorefineries and then provides an update on the latest advances in green chemistry that support biomass processing and conversion. Next, the authors describe current and emerging biomass processing and conversion techniques that use green chemistry technologies, including: Green solvents such as ionic liquids, supercritical CO2, and water Sustainable energy sources such as microwave irradiation and sonification Green catalytic technologies Advanced membrane separation technologies The last chapter of the book explores the ecotoxicological and environmental effects of converting and using fuels, chemicals, and materials from biomass. Recommended for professionals and students in chemical engineering, green chemistry, and energy and fuels, The Role of Green Chemistry in Biomass Processing and Conversion sets a strong foundation for the development of a competitive and sustainable bioeconomy. This monograph includes a Foreword by James Clark (University of York, UK).




Research in Thermochemical Biomass Conversion


Book Description

This conference is the second such meeting under the auspices of the International Energy Agency's Bioenergy Agreement. The first lEA sponsored Fundamentals of Thermochemical Biomass Conversion Conference was held in Estes Park in 1982 and attracted 153 delegates from 13 countries around the world at a time when interest in biomass derived energy was at a peak. Since then oil prices have fallen considerably and with most prognoses for level prices until the end of the century, there has been a significant downturn in support for biomass conversion technologies. It has been particularly encouraging, therefore, to have received such an excellent response to this meeting. A total of 122 papers were offered, and 135 delegates registered for the conference from 19 countries. The theme of this meeting was Research in Thermochemical Biomass Conversion to reflect the advances made in research, development, demonstration and com mercialisation since the Fundamentals meeting in 1982. The programme was divided into sections on fundamental research, applied research, and demonstration and commercial activities to emphasise the interaction and roles of all levels of research in supporting the eventual commercial implementation. The layout of the pro ceedings reflects this same pattern, with an introductory section on status and technoeconomics to identify opportunities and constraints in different parts of the world. All the papers included in these proceedings have been subjected to the usual peer review process to ensure the highest standards.




Technologies for Converting Biomass to Useful Energy


Book Description

Officially, the use of biomass for energy meets only 10-13% of the total global energy demand of 140 000 TWh per year. Still, thirty years ago the official figure was zero, as only traded biomass was included. While the actual production of biomass is in the range of 270 000 TWh per year, most of this is not used for energy purposes, and mostly it




Biomass Conversion


Book Description

Biomass conversion research is a combination of basic science, applied science, and engineering testing and analysis. Conversion science includes the initial treatment (called pre-treatment) of the feedstock to render it more amenable to enzyme action, enzymatic saccharification, and finally product formation by microbiological or chemical processes. In Biomass Conversion: Methods and Protocols, expert researchers in the field detail methods which are now commonly used to study biomass conversion. These methods include Biomass Feedstocks and Cellulose, Plant Cell Wall Degrading Enzymes and Microorganisms, and Lignins and Hemicelluloses. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting informed, reproducible results in the laboratory.




Plant Biomass Conversion


Book Description

A whole host of motivations are driving the development of the “renewables” industry— ranging from the desire to develop sustainable energy resources to the reduction of dangerous greenhouse gases that contribute to global warming. All energy utilized on the earth is ultimately derived from the sun through photosynthesis—the only truly renewable commodity. As concerns regarding increasing energy prices, global warming and renewable resources continue to grow, so has scientific discovery into agricultural biomass conversion. Plant Biomass Conversion addresses both the development of plant biomass and conversion technology, in addition to issues surrounding biomass conversion, such as the affect on water resources and soil sustainability. This book also offers a brief overview of the current status of the industry and examples of production plants being used in current biomass conversion efforts.