Bioenergy


Book Description

Bioenergy: Biomass to Biofuels and Waste to Energy, Second Edition presents a complete overview of the bioenergy value chain, from feedstock to end products. It examines current and emerging feedstocks and advanced processes and technologies enabling the development of all possible alternative energy sources. Divided into seven parts, bioenergy gives thorough consideration to topics such as feedstocks, biomass production and utilization, life-cycle analysis, energy return on invested, integrated sustainability assessments, conversions technologies, biofuels economics, business, and policy. In addition, contributions from leading industry professionals and academics, augmented by related service-learning case studies and quizzes, provide readers with a comprehensive resource that connect theory to real-world implementation.Bioenergy: Biomass to Biofuels and Waste to Energy, Second Edition provides engineers, researchers, undergraduate and graduate students, and business professionals in the bioenergy field with valuable, practical information that can be applied to implementing renewable energy projects, choosing among competing feedstocks, technologies, and products. It also serves as a basic resource for civic leaders, economic development professionals, farmers, investors, fleet managers, and reporters interested in an organized introduction to the language, feedstocks, technologies, and products in the biobased renewable energy world. - Includes current and renewed subject matter, project case studies from real world, and topic-specific sections on the impacts of biomass use for energy production from all sorts of biomass feedstocks including organic waste of all kinds - Provides a comprehensive overview and in-depth technical information of all possible bioenergy resources: solid (wood energy, grass energy, waste, and other biomass), liquid (biodiesel, algae biofuel, ethanol, waste to oils, etc.), and gaseous/electric (biogas, syngas, biopower, RNG), and cutting-edge topics such as advanced fuels - Integrates current state of art coverage on feedstocks, cost-effective conversion processes, biofuels economic analysis, environmental policy, and triple bottom line - Features quizzes for each section derived from the implementation of actual hands-on biofuel projects as part of service learning




Bioenergy Research: Advances and Applications


Book Description

Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post-graduates, researchers and practitioners studying and working in field of the bioenergy. It is an invaluable information resource on biomass-based biofuels for fundamental and applied research, catering to researchers in the areas of bio-hydrogen, bioethanol, bio-methane and biorefineries, and the use of microbial processes in the conversion of biomass into biofuels. - Reviews all existing and promising technologies for production of advanced biofuels in addition to bioenergy policies and research funding - Cutting-edge research concepts for biofuels production using biological and biochemical routes, including microbial fuel cells - Includes production methods and conversion processes for all types of biofuels, including bioethanol and biohydrogen, and outlines the pros and cons of each




Biomass and Bioenergy


Book Description

Biomass obtained from agricultural residues or forest can be used to produce different materials and bioenergy required in a modern society. As compared to other resources available, biomass is one of the most common and widespread resources in the world. Thus, biomass has the potential to provide a renewable energy source, both locally and across large areas of the world. It is estimated that the total investment in the biomass sector between 2008 and 2021 will reach the large sum of $104 billion. Presently bioenergy is the most important renewable energy option and will remain so the near and medium-term future. Previously several countries try to explore the utilization of biomass in bioenergy and composite sector. Biomass has the potential to become the world’s largest and most sustainable energy source and will be very much in demand. Bioenergy is based on resources that can be utilized on a sustainable basis all around the world and can thus serve as an effective option for the provision of energy services. In addition, the benefits accrued go beyond energy provision, creating unique opportunities for regional development. The present book will provide an up-to-date account of non-wood, forest residues, agricultural biomass (natural fibers), and energy crops together with processing, properties and its applications to ensure biomass utilization and reuse. All aspects of biomass and bioenergy and their properties and applications will be critically re-examined. The book consists of three sections, presenting Non wood and forest products from forestry, arboriculture activities or from wood processing, agricultural biomass (natural fibers) from agricultural harvesting or processing and finally energy crops: high yield crops and grasses grown especially for energy production.




Biomass, Biopolymer-Based Materials, and Bioenergy


Book Description

Biomass, Biopolymer-Based Materials and Bioenergy: Construction, Biomedical and Other Industrial Applications covers a broad range of material types, including natural fiber reinforced polymer composites, particulate composites, fiberboard, wood fiber composites, and plywood composite that utilize natural, renewable and biodegradable agricultural biomass. In terms of bioenergy, the authors explore not only the well-known processing methods of biofuels, but also the kinetics of biofuels production pathways, a techno-economic analysis on biomass gasification, and biomass gasification with further upgrading into diesel additives and hybrid renewable energy systems for power generation. Further chapters discuss advanced techniques for the development of biomass-based composites, biopolymer-based composites, biomass gasification, thermal kinetic design and techno-economic analysis of biomass gasification. By introducing these topics, the book highlights a totally new research theme in biopolymer-based composite materials and bioenergy. - Covers a broad range of different research fields, including biopolymer and natural fiber reinforcement used in the development of composites - Demonstrates key research themes in materials science and engineering, including materials processing, polymer science, biofuel processing, and thermal and kinetic studies - Presents valuable information for those working in research and development departments, and for graduate students (Masters and PhDs)




Hydrogen, Biomass and Bioenergy


Book Description

Hydrogen and Bioenergy: Integration Pathways for Renewable Energy Applications focuses on the nexus between hydrogen and carbon compounds as energy carriers, with a particular focus on renewable energy solutions. This book explores opportunities for integrating hydrogen in the bioenergy value chain, such as adding hydrogen to upgrade biofuels and lower CO2 emissions during production. The book also takes the inverse path to examine hydrogen production by chemical and biological routes from various bioresources, including solid waste, wastewater, agricultural products and algae. This broad coverage of technologies and applications presents a unique resource for researchers and practitioners developing integrated hydrogen and bioenergy technologies. This book will also be useful for graduate students and new researchers, presenting an introductory resource in the areas of hydrogen and bioenergy. Energy planners and engineers will also benefit from this content when designing and deploying hydrogen infrastructure for power, heating and transportation. Provides a comprehensive picture of hydrogen generation from biomass, as well as other sources of hydrogen for power, heating, transportation and storage applications Explores the ways hydrogen can be utilized in combination with bio-derived hydrocarbon chains to produce a variety of substitutes for fossil fuel-based petrochemicals Fills the gap between theoretical knowledge and technology viability Analyzes how these technologies fit into an overall energy strategy targeted at expanding the renewable energy sector




Bioenergy and Biofuel from Biowastes and Biomass


Book Description

Biofuel and bioenergy produced from biowastes and biomass is a clean energy source which can be produced renewably. The 21 chapters of this book provide state-of-the-art reviews, current research, and technology developments with respect to 1st, 2nd, and 3rd generation biofuels and bioenergy. The book focuses on the biological/ biochemical pathway, as this option has been reported to be the most cost-effective method for biofuel/bioenergy production. The opening chapter covers the overview of the current status of biofuel and bioenergy production. The rest of the chapters are grouped into seven categories; they cover biomethane production, microbial fuel cells, feedstock production, preprocessing, biomass pretreatment, enzyme hydrolysis, and syngas fermentation. Algal processes for biofuel production, biobutanol production, bioreactor systems, and value-added processing of biofuel residues are included. This book addresses life cycle analyses (LCA) of 1st and 2nd generation biofuels (from corn, soybean, jatropha, and cellulosic biomass) and the emerging applications of nanotechnology in biofuel/bioenergy production. The book is organized in such a way that each preceding chapter builds a foundation for the following one. At the end of each chapter, current research trends and further research needs are outlined. This is one of the first books in this emerging field of biofuel/bioenergy that provides in-depth technical information on the broad topics of biofuel and bioenergy with extensive illustrations, case studies, summary tables, and up-to-date references. This book will be valuable to researchers, instructors, senior undergraduate and graduate students, decision-makers, professionals, and others interested in the field of biofuel/bioenergy.




Bioenergy Systems for the Future


Book Description

Bioenergy Systems for the Future: Prospects for Biofuels and Biohydrogen examines the current advances in biomass conversion technologies for biofuels and biohydrogen production, including their advantages and challenges for real-world application and industrial-scale implementation. In its first part, the book explores the use of lignocellulosic biomass and agricultural wastes as feedstock, also addressing biomass conversion into biofuels, such as bioethanol, biodiesel, bio-methane, and bio-gasoline. The chapters in Part II cover several different pathways for hydrogen production, from biomass, including bioethanol and bio-methane reforming and syngas conversion. They also include a comparison between the most recent conversion technologies and conventional approaches for hydrogen production. Part III presents the status of advanced bioenergy technologies, such as applications of nanotechnology and the use of bio-alcohol in low-temperature fuel cells. The role of advanced bioenergy in a future bioeconomy and the integration of these technologies into existing systems are also discussed, providing a comprehensive, application-oriented overview that is ideal for engineering professionals, researchers, and graduate students involved in bioenergy. - Explores the most recent technologies for advanced liquid and gaseous biofuels production, along with their advantages and challenges - Presents real-life application of conversion technologies and their integration in existing systems - Includes the most promising pathways for sustainable hydrogen production for energy applications




Biomass Feedstocks for Biopower


Book Description

This is a print on demand edition of a hard to find publication. Biopower -- a form of renewable energy -- is the generation of electric power from biomass feedstocks. Biopower, which comprised about 1% of electricity generation in 2008, may reduce greenhouse gas emissions, provide energy security, and promote economic development. A large range of feedstocks can be used, from woody and herbaceous biomass to agricultural residues. Each feedstock has technical and economic advantages and challenges compared to fossil fuels. Contents of this report: Intro.; What Kind of Biomass is Available for Biopower?; From Biomass to Biopower; Carbon Balance; Implications for Legislation; Conclusion; Appendices: Biomass Feedstock Characteristics for Biopower Generation; Biopower R&D Authorizations. Illustrations.




Handbook of Bioenergy Crops


Book Description

This completely revised second edition includes new information on biomass in relation to climate change, new coverage of vital issues including the "food versus fuel" debate, and essential new information on "second generation" fuels and advances in conversion techniques. The book begins with a guide to biomass accumulation, harvesting, transportation and storage, as well as conversion technologies for biofuels. This is followed by an examination of the environmental impact and economic and social dimensions, including prospects for renewable energy. The book then goes on to cover all the main potential energy crops.




Biomass and Bioenergy


Book Description

Biomass obtained from agricultural residues or forest can be used to produce different materials and bioenergy required in a modern society. As compared to other resources available, biomass is one of the most common and widespread resources in the world. Thus, biomass has the potential to provide a renewable energy source, both locally and across large areas of the world. It is estimated that the total investment in the biomass sector between 2008 and 2021 will reach the large sum of $104 billion. Presently bioenergy is the most important renewable energy option and will remain so the near and medium-term future. Previously several countries try to explore the utilization of biomass in bioenergy and composite sector. Biomass has the potential to become the world’s largest and most sustainable energy source and will be very much in demand. Bioenergy is based on resources that can be utilized on a sustainable basis all around the world and can thus serve as an effective option for the provision of energy services. In addition, the benefits accrued go beyond energy provision, creating unique opportunities for regional development. The present book will provide an up-to-date account of non-wood, forest residues, agricultural biomass (natural fibers), and energy crops together with processing, properties, and its applications to ensure biomass utilization and reuse. All aspects of biomass and bioenergy and their properties and applications will be critically re-examined. The book consists of three sections, presenting Non wood and forest products from forestry, arboriculture activities or from wood processing, agricultural biomass (natural fibers) from agricultural harvesting or processing and finally energy crops: high yield crops and grasses grown especially for energy production.​