Negative Emissions Technologies and Reliable Sequestration


Book Description

To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.




Carbon-Neutral Fuels and Energy Carriers


Book Description

Concerns over an unstable energy supply and the adverse environmental impact of carbonaceous fuels have triggered considerable efforts worldwide to find carbon-free or low-carbon alternatives to conventional fossil fuels. Carbon-Neutral Fuels and Energy Carriers emphasizes the vital role of carbon-neutral energy sources, transportation fuels, and a




Advances in Carbon Management Technologies


Book Description

Volume 2 of Advances in Carbon Management Technologies has 21 chapters. It presents the introductory chapter again, for framing the challenges that confront the proposed solutions discussed in this volume. Section 4 presents various ways biomass and biomass wastes can be manipulated to provide a low-carbon footprint of the generation of power, heat and co-products, and of recovery and reuse of biomass wastes for beneficial purposes. Section 5 provides potential carbon management solutions in urban and manufacturing environments. This section also provides state-of the-art of battery technologies for the transportation sector. The chapters in section 6 deals with electricity and the grid, and how decarbonization can be practiced in the electricity sector. The overall topic of advances in carbon management is too broad to be covered in a book of this size. It was not intended to cover every possible aspect that is relevant to the topic. Attempts were made, however, to highlight the most important issues of decarbonization from technological viewpoints. Over the years carbon intensity of products and processes has decreased, but the proportion of energy derived from fossil fuels has been stubornly stuck at about 80%. This has occurred despite very rapid development of renewable fuels, because at the same time the use of fossil fuels has also increased. Thus, the challenges are truly daunting. It is hoped that the technology choices provided here will show the myriad ways that solutions will evolve. While policy decisions are the driving forces for technology development, the book was not designed to cover policy solutions.







Sustainable Fossil Fuels


Book Description

More and more people believe we must quickly wean ourselves from fossil fuels - oil, natural gas and coal - to save the planet from environmental catastrophe, wars and economic collapse. In this 2006 book, Professor Jaccard argues that this view is misguided. We have the technological capability to use fossil fuels without emitting climate-threatening greenhouse gases or other pollutants. The transition from conventional oil and gas to their unconventional sources including coal for producing electricity, hydrogen and cleaner-burning fuels will decrease energy dependence on politically unstable regions. In addition, our vast fossil fuel resources will be the cheapest source of clean energy for the next century and perhaps longer, which is critical for the economic and social development of the world's poorer countries. By buying time for increasing energy efficiency, developing renewable energy technologies and making nuclear power more attractive, fossil fuels will play a key role in humanity's quest for a sustainable energy system.




Fossil Fuel Emissions Control Technologies


Book Description

An expert guide to emission control technologies and applications, Fossil Fuels Emissions Control Technologies provides engineers with a guide to link emission control strategies to available technologies, allowing them to choose the technology that best suits their individual need. This includes reduction technologies for Nitrogen Oxides, Sulfur Oxides, Mercury and Acid Gases. In this reference, the author explains the most critical control technologies and their application to real-world regulatory compliance issues. Numerous diagrams and examples emphasizing pollution formation mechanisms, key points in pollutant control, and design techniques are also included. Provides numerous diagrams and examples to emphasize pollution formation mechanisms Coverage of critical control technologies and their application to real-world solutions Explains Sulfur Oxides, Acid Gases, Nitrogen Oxides Formation and Organic HAPs, Control and Reduction Technologies Covers Particulate Matter and Mercury Emissions Formation and Reduction Technologies




Hitting the Wall


Book Description

Hitting the Wall examines the combination of two intractable energy problems of our age: the peaking of global oil production and the overloading of the atmosphere with greenhouse gases. Both emerge from the overconsumption of fossil fuels and solving one problem helps solve the other. The misinformation campaign about climate change is discussed as is the role that noncarbon energy solutions can play. There are nine major components in the proposed noncarbon strategy including energy efficiency and renewable energy. Economics and realistic restraints are considered and the total carbon reduction by 2030 is evaluated, and the results show that this strategy will reduce the carbon emission in the United States to be on track to an 80% reduction in 2050. The prospects for "clean" coal and "acceptable" nuclear are considered, and there is some hope that they would be used in an interim role. Although there are significant technical challenges to assembling these new energy systems, the primary difficulty lies in the political arena. A multigenerational strategy is needed to guide our actions over the next century. Garnering long-term multiadministration coherent policies to put the elements of any proposed strategy in place, is a relatively rare occurrence in the United States. More common is the reversal of one policy by the next administration with counterproductive results. A framework for politically stable action is developed using the framework of "energy tribes" where all the disparate voices in the energy debate are included and considered in a "messy process." This book provides hope that our descendants in the next century will live in a world that would be familiar to us. This can only be achieved if the United States plays an active leadership role in maintaining climatic balance. Table of Contents: Introduction / The End of Cheap Oil / Carbon - Too Much of a Good Thing / Carbonless Energy Options / Conventional Energy / Policy for Whom? / Call to Arms / References




Biomass Energy with Carbon Capture and Storage (BECCS)


Book Description

An essential resource for understanding the potential role for biomass energy with carbon capture and storage in addressing climate change Biomass Energy with Carbon Capture and Storage (BECCS) offers a comprehensive review of the characteristics of BECCS technologies in relation to its various applications. The authors — a team of expert professionals — bring together in one volume the technical, scientific, social, economic and governance issues relating to the potential deployment of BECCS as a key approach to climate change mitigation. The text contains information on the current and future opportunities and constraints for biomass energy, explores the technologies involved in BECCS systems and the performance characteristics of a variety of technical systems. In addition, the text includes an examination of the role of BECCS in climate change mitigation, carbon accounting across the supply chain and policy frameworks. The authors also offer a review of the social and ethical aspects as well as the costs and economics of BECCS. This important text: Reveals the role BECCS could play in the transition to a low-carbon economy Discusses the wide variety of technical and non-technical constraints of BECCS Presents the basics of biomass energy systems Reviews the technical and engineering issues pertinent to BECCS Explores the societal implications of BECCS systems Written for academics and research professionals, Biomass Energy with Carbon Capture and Storage (BECCS) brings together in one volume the issues surrounding BECCS in an accessible and authoritative manner.