Biomass to Energy Conversion Technologies


Book Description

Biomass to Energy Conversion Technologies: The Road to Commercialization examines biomass production, biomass types, properties and characterization, and energy conversion technologies with an emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to produce electricity. The book discusses the integration of both fermentation and anaerobic digestion in a biorefinery concept that allows the production of ethanol—along with biogas—to be used to produce heat and electricity, thus improving overall energy balance. Included case studies based on worldwide projects discuss both risks and challenges. The main studies on the combination of both bioethanol and biogas production processes are reviewed and the strength and weakness of the integrated treatment for industrial application are highlighted. The book also considers gasification technologies and their potential for biomass gasification and lists the advantages and disadvantages of using of biomass as a source of energy, the path of commercialization of the various processes, energy related environmental issues. Highlights commercialization and technological risks Discusses challenges, limitations and future prospects of third- and fourth generation biofuels Includes integration of both fermentation and anaerobic digestion in a biorefinery concept Discusses energy related environment issues (Greenhouse effect, acid rain, air pollution)




Technologies for Biochemical Conversion of Biomass


Book Description

Technologies for Biochemical Conversion of Biomass introduces biomass biochemical conversion technology, including the pretreatment platform, enzyme platform, cell refining platform, sugar platform, fermentation platform, and post-treatment platform. Readers will find a systematic treatment, not only of the basics of biomass biochemical conversion and the introduction of each strategy, but also of the current advances of research in this area. Researchers will find the key problems in each technology platform for biomass biochemical conversion identified and solutions offered. This valuable reference book features new scientific research and the related industrial application of biomass biochemical conversion technology as the main content, and then systematically introduces the basic principles and applications of biomass biochemical conversion technology. Combines descriptions of these technologies to provide strategies and a platform for biochemical conversion in terms of basic knowledge, research advances, and key problems Summarizes models of biomass biochemical conversion for multiple products Presents products of biomass biochemical conversion from C1 to C10




Recent Advances in Thermochemical Conversion of Biomass


Book Description

This book provides general information and data on one of the most promising renewable energy sources: biomass for its thermochemical conversion. During the last few years, there has been increasing focus on developing the processes and technologies for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular to develop low-cost technologies. This book provides date-based scientific information on the most advanced and innovative processing of biomass as well as the process development elements on thermochemical processing of biomass for the production of biofuels and bio-products on (biomass-based biorefinery). The conversion of biomass to biofuels and other value-added products on the principle biorefinery offers potential from technological perspectives as alternate energy. The book covers intensive R&D and technological developments done during the last few years in the area of renewable energy utilizing biomass as feedstock and will be highly beneficial for the researchers, scientists and engineers working in the area of biomass-biofuels- biorefinery. Provides the most advanced and innovative thermochemical conversion technology for biomass Provides information on large scales such as thermochemical biorefinery Useful for researchers intending to study scale up Serves as both a textbook for graduate students and a reference book for researchers Provides information on integration of process and technology on thermochemical conversion of biomass




Technologies for Converting Biomass to Useful Energy


Book Description

Officially, the use of biomass for energy meets only 10-13% of the total global energy demand of 140 000 TWh per year. Still, thirty years ago the official figure was zero, as only traded biomass was included. While the actual production of biomass is in the range of 270 000 TWh per year, most of this is not used for energy purposes, and mostly it




Innovative Renewable Waste Conversion Technologies


Book Description

This book investigates innovative solutions to increase the share of renewable engery in the global power mix, with a particular focus on improved and sustainable biomass conversion technologies. To this end, the book deals with an analysis of the generation mix of renewable energies (including biofuels, renewable waste and biogas) in the overall power balance of several countries. In addition, the possibilities of using bioenergy resources in the context of power generation are thoroughly analyzed. As one of the most important ways of converting biomass into energy, the combustion process is analyzed in detail, highlighting the vast potential for the use of innovative biofuels. In this context, a detailed classification of existing biofuels is established, reflecting the relationship between their energy properties and their potential use in industrial facilities. Additionally, the most efficient combustion technologies for the respective applications are discussed. Furthermore, the authors emphasize that the management of renewable waste, both from industry (tannery waste and oils from transport) and agriculture, requires an economic and environmental friendly approach. The challenges of burning various renewable waste fuels and upgrading industrial facilities are discussed, and the ideas and technologies presented in this book contribute to the UN Sustainable Development Goal (SDG) for "Affordable and Clean Energy". The book is a useful resource for professionals dealing with current and upcoming activities related to renewable energy combustion, and a good starting point for young researchers.




Greenhouse Gas Balances of Bioenergy Systems


Book Description

Greenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practically managed to deliver sustainable greenhouse gas reductions. Its expert chapter authors present readers to the methods used to determine the greenhouse gas balance of bioenergy systems, the data required and the significance of the results obtained. It also provides in-depth discussion of key issues and uncertainties, such as soil, agriculture, forestry, fuel conversion and emissions formation. Finally, international case studies examine typical GHG reduction levels for different systems and highlight best practices for bioenergy GHG mitigation. For bringing together into one volume information from several different fields that was up until now scattered throughout many different sources, this book is ideal for researchers, graduate students and professionals coming into the bioenergy field, no matter their previous background. It will be particularly useful for bioenergy researchers seeking to calculate greenhouse gas balances for systems they are studying. I will also be an important resource for policy makers and energy analysts. Uses a multidisciplinary approach to synthesize the diverse information that is required to competently execute GHG balances for bioenergy systems Presents an in-depth understanding of the science underpinning key issues and uncertainty in GHG assessments of bioenergy systems Includes case studies that examine ways to maximize the GHG reductions delivered by different bioenergy systems




Biomass Conversion Processes for Energy and Fuels


Book Description

Countless pages have been written on alternative energy sources since the fall of 1973 when our dependence on fossil petroleum resources became a grim reality. One such alternative is the use of biomass for producing energy and liquid and gaseous fuels. The term "biomass" generally refers to renewable organic matter generated by plants through photosynthesis. Thus trees, agri cultural crops, and aquatic plants are prime sources of biomass. Furthermore, as these sources of biomass are harvested and processed into commercial prod ucts, residues and wastes are generated. These, together with municipal solid wastes, not only add to the total organic raw material base that can be utilized for energy purposes but they also need to be removed for environmental reasons. Biomass has been used since antiquity for energy and material needs. In is still one of the most sought-after energy sources in most of the fact, firewood world. Furthermore, wood was still a dominant energy source in the U. S. only a hundred years ago (equal with coal). Currently, biomass contributes about 15 2 quadrillion Btu (l quad = 10 Btu) of energy to our total energy consump tion of about 78 quad. Two quad may not seem large when compared to the contribution made by petroleum (38 quad) or natural gas (20 quad), but bio mass is nearly comparable to nuclear energy (2. 7 quad).




Biomass as a Sustainable Energy Source for the Future


Book Description

Focusing on the conversion of biomass into gas or liquid fuels the book covers physical pre-treatment technologies, thermal, chemical and biochemical conversion technologies • Details the latest biomass characterization techniques • Explains the biochemical and thermochemical conversion processes • Discusses the development of integrated biorefineries, which are similar to petroleum refineries in concept, covering such topics as reactor configurations and downstream processing • Describes how to mitigate the environmental risks when using biomass as fuel • Includes many problems, small projects, sample calculations and industrial application examples




Biomass Conversion


Book Description

The consumption of petroleum has surged during the 20th century, at least partially because of the rise of the automobile industry. Today, fossil fuels such as coal, oil, and natural gas provide more than three quarters of the world's energy. Unfortunately, the growing demand for fossil fuel resources comes at a time of diminishing reserves of these nonrenewable resources. The worldwide reserves of oil are sufficient to supply energy and chemicals for only about another 40 years, causing widening concerns about rising oil prices. The use of biomass to produce energy is only one form of renewable energy that can be utilized to reduce the impact of energy production and use on the global environment. Biomass can be converted into three main products such as energy, biofuels and fine chemicals using a number of different processes. Today, it is a great challenge for researchers to find new environmentally benign methodology for biomass conversion, which are industrially profitable as well. This book focuses on the conversion of biomass to biofuels, bioenergy and fine chemicals with the interface of biotechnology, microbiology, chemistry and materials science. An international scientific authorship summarizes the state-of-the-art of the current research and gives an outlook on future developments.




Biomass to Renewable Energy Processes


Book Description

Continuously increased consumption of fossil fuels, decreased availability of easily accessible fossil fuels, significant contributions to climate change and wildly fluctuating fuels prices have combine to challenge the reliability and sustainability of our current energy supply. A possible solution to this energy challenge, biomass energy producti