Biomaterials for 3D Tumor Modeling


Book Description

Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery




Tumor Organoids


Book Description

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.




Molecular Analysis of Cancer


Book Description

Over the past 20 years, technological advances in molecular biology have proven invaluable to the understanding of the pathogenesis of human cancer. The application of molecular technology to the study of cancer has not only led to advances in tumor diagnosis, but has also provided markers for the assessment of prognosis and disease progression. The aim of Molecular Ana- sis of Cancer is to provide a comprehensive collection of the most up-to-date techniques for the detection of molecular changes in human cancer. Leading researchers in the field have contributed chapters detailing practical pro- dures for a wide range of state-of-the-art techniques. Molecular Analysis of Cancer includes chapters describing techniques for the identification of chromosomal abnormalities and comprising: fluor- cent in situ hybridization (FISH), spectral karyotyping (SKY), comparative genomic hybridization (CGH), and microsatellite analysis. FISH has a pro- nent role in the molecular analysis of cancer and can be used for the detection of numerical and structural chromosomal abnormalities. The recently described SKY, in which all human metaphase chromosomes are visualized in specific colors, allows for the definition of all chromosomal rearrangements and marker chromosomes in a tumor cell. Protocols for the detection of chromosomal re- rangements by PCR and RT-PCR are described, as well as the technique of DNA fingerprinting, a powerful tool for studying somatic genetic alterations in tumorigenesis.




Advanced Healthcare Materials


Book Description

Offers a comprehensive and interdisciplinary view of cutting-edge research on advanced materials for healthcare technology and applications Advanced healthcare materials are attracting strong interest in fundamental as well as applied medical science and technology. This book summarizes the current state of knowledge in the field of advanced materials for functional therapeutics, point-of-care diagnostics, translational materials, and up-and-coming bioengineering devices. Advanced Healthcare Materials highlights the key features that enable the design of stimuli-responsive smart nanoparticles, novel biomaterials, and nano/micro devices for either diagnosis or therapy, or both, called theranostics. It also presents the latest advancements in healthcare materials and medical technology. The senior researchers from global knowledge centers have written topics including: State-of-the-art of biomaterials for human health Micro- and nanoparticles and their application in biosensors The role of immunoassays Stimuli-responsive smart nanoparticles Diagnosis and treatment of cancer Advanced materials for biomedical application and drug delivery Nanoparticles for diagnosis and/or treatment of Alzheimers disease Hierarchical modelling of elastic behavior of human dental tissue Biodegradable porous hydrogels Hydrogels in tissue engineering, drug delivery, and wound care Modified natural zeolites Supramolecular hydrogels based on cyclodextrin poly(pseudo)rotaxane Polyhydroxyalkanoate-based biomaterials Biomimetic molecularly imprinted polymers




3D Printing in Medicine


Book Description

3D Printing in Medicine, Second Edition examines the rapidly growing market of 3D-printed biomaterials and their clinical applications. With a particular focus on both commercial and premarket tools, the book looks at their applications within medicine and the future outlook for the field. The chapters are written by field experts actively engaged in educational and research activities at the top universities in the world. The earlier chapters cover the fundamentals of 3D printing, including topics such as materials and hardware. The later chapters go on to cover innovative applications within medicine such as computational analysis of 3D printed constructs, personalized 3D printing - including 3D cell and organ printing and the role of AI - with a subsequent look at the applications of high-resolution printing, 3D printing in diagnostics, drug development, 4D printing, and much more. This updated new edition features completely revised content, with additional new chapters covering organs-on-chips, bioprinting regulations and standards, intellectual properties, and socio-ethical implications of organs-on-demand. - Reviews a broad range of biomedical applications of 3D printing biomaterials and technologies - Provides an interdisciplinary look at 3D printing in medicine, bridging the gap between engineering and clinical fields - Includes completely updated content with additional new chapters, covering topics such as organs-on-chips, bioprinting regulations, intellectual properties, medical standards in 3D printing, and more




Therapeutic Dressings and Wound Healing Applications


Book Description

The latest research on techniques for effective healing of chronic and difficult to heal wounds The healing of chronic wounds is a global medical concern, specifically for patients suffering from obesity and type II diabetes. Therapeutic Dressing and Wound Healing Applications is an essential text for research labs, industry professionals, and general clinical practitioners that want to make the shift towards advanced therapeutic dressing and groundbreaking wound application for better healing. This book takes a clinical and scientific approach to wound healing, and includes recent case studies to highlight key points and areas of improvement. It is divided into two key sections that include insight into the biochemical basis of wounds, as well as techniques and recent advancements. Chapters include information on: ● Debridement and disinfection properties of wound dressing ● Biofilms, silver nanoparticles, and honey dressings ● Clinical perspectives for treating diabetic wounds ● Treating mixed infections ● Wound healing and tissue regeneration treatments ● Gene based therapy, 3D bioprinting and freeze-dried wafers Anyone looking to update and improve the treatment of chronic wounds for patients will find the latest pertinent information in Therapeutic Dressing and Wound Healing Applications.




Theory and Applications of Heat Transfer in Humans, 2 Volume Set


Book Description

An authoritative guide to theory and applications of heat transfer in humans Theory and Applications of Heat Transfer in Humans 2V Set offers a reference to the field of heating and cooling of tissue, and associated damage. The author—a noted expert in the field—presents, in this book, the fundamental physics and physiology related to the field, along with some of the recent applications, all in one place, in such a way as to enable and enrich both beginner and advanced readers. The book provides a basic framework that can be used to obtain ‘decent’ estimates of tissue temperatures for various applications involving tissue heating and/or cooling, and also presents ways to further develop more complex methods, if needed, to obtain more accurate results. The book is arranged in three sections: The first section, named ‘Physics’, presents fundamental mathematical frameworks that can be used as is or combined together forming more complex tools to determine tissue temperatures; the second section, named ‘Physiology’, presents ideas and data that provide the basis for the physiological assumptions needed to develop successful mathematical tools; and finally, the third section, named ‘Applications’, presents examples of how the marriage of the first two sections are used to solve problems of today and tomorrow. This important text is the vital resource that: Offers a reference book in the field of heating and cooling of tissue, and associated damage. Provides a comprehensive theoretical and experimental basis with biomedical applications Shows how to develop and implement both, simple and complex mathematical models to predict tissue temperatures Includes simple examples and results so readers can use those results directly or adapt them for their applications Designed for students, engineers, and other professionals, a comprehensive text to the field of heating and cooling of tissue that includes proven theories with applications. The author reveals how to develop simple and complex mathematical models, to predict tissue heating and/or cooling, and associated damage.




Nanopharmaceuticals: Principles and Applications Vol. 3


Book Description

This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.




Textbook of Oral Cancer


Book Description

This comprehensive multidisciplinary book examines all aspects of cancers of the mouth and oropharynx with the aim of equipping advanced students and practitioners in the early stages of specialist training with an up-to-date guide and reference. A multinational team of authors – all experts in the field of oral oncology – provide illuminating contributions on the full range of relevant topics: epidemiology, risk factors, clinical features, staging and prognostic factors, pathology, diagnostic techniques, disease prevention, surgery, radiotherapy, and chemotherapy. Molecular biology, molecular targeted therapies for advanced cases, and future diagnostic and prognostic applications of new technologies also receive careful attention. In providing a wealth of essential information and guidance in a practical format, the book will be a superb asset for senior graduate students in dentistry and specialist trainees in head and neck oncology. It will also be of high value for the many physicians, surgeons, pathologists, dentists, and specialists involved in the prevention, diagnosis, and management of squamous cell carcinomas of the oral cavity and oropharynx.




Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering


Book Description

Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering explores the intricacies of nanostructures and 3D printed systems in terms of their design as drug delivery or tissue engineering devices, their further evaluations and diverse applications. The book highlights the most recent advances in both nanosystems and 3D-printed systems for both drug delivery and tissue engineering applications. It discusses the convergence of biofabrication with nanotechnology, constructing a directional customizable biomaterial arrangement for promoting tissue regeneration, combined with the potential for controlled bioactive delivery. These discussions provide a new viewpoint for both biomaterials scientists and pharmaceutical scientists. - Shows how nanotechnology and 3D printing are being used to create systems which are intelligent, biomimetic and customizable to the patient - Explores the current generation of nanostructured 3D printed medical devices - Assesses the major challenges of using 3D printed nanosystems for the manufacture of new pharmaceuticals