Biomaterials Associated Infection


Book Description

Biomaterials associated infection (BAI) is one of the most common complications associated with implantation of any biomaterial regardless of form or function. These infections usually involve bacterial colonization and biofilm formation on the biomaterial itself, rendering the infection impervious to antimicrobials and host defenses. In addition, it is becoming increasingly clear that infection of the surrounding tissues also plays an important role in BAI, and that the infection may be influenced by the composition and design of the implanted biomaterial. In this book, worldwide leaders in the field address this critical problem in the translation of biomaterials research into clinical practice. The book begins with an emphasis on the latest research in the pathogenesis of BAI from microbiological, immunological, and materials science perspectives. The current state of the art in antimicrobial activation of biomaterials through surface modification and the incorporation of antimicrobial agents is then discussed. In the concluding chapters, successful translation of a selection of antimicrobial technologies from preclinical research into clinical use is described alongside a discussion of the utility of these devices and perspectives for future development. This book is essential reading for researchers and clinicians who are interested in understanding the fundamentals of BAI, the latest in antimicrobial materials research, and the state of the art in clinically available antimicrobial containing medical devices.




Biofilms and Implantable Medical Devices


Book Description

Biofilms and Implantable Medical Devices: Infection and Control explores the increasing use of permanent and semi-permanent implants and indwelling medical devices. As an understanding of the growth and impact of biofilm formation on these medical devices and biomaterials is vital for protecting the health of the human host, this book provides readers with a comprehensive treatise on biofilms and their relationship with medical devices, also reporting on infections and associated strategies for prevention. - Provides useful information on the fundamentals of biofilm problems in medical devices - Discusses biofilm problems in a range of medical devices - Focuses on strategies for prevention of biofilm formation




Biomaterial-Related Infections


Book Description

The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.




Handbook of Polymer Applications in Medicine and Medical Devices


Book Description

This chapter focuses on adhesives used in direct physiological contact in dental and medical procedures. Activity in both areas has been quite extensive outside the United States for decades. In contrast, adhesive use in medical devices, patches, and plasters has been ongoing in the United States for a long time. In the case of medical devices, adhesion is concerned with the joining of materials such as plastics, elastomers, textiles, metals, and ceramics, which are examined in other chapters of the present volume and are covered in various references [1–6], The coverage of this chapter is devoted to applications where to adhesives are in direct contact with tissues and other live organs.




Racing for the Surface


Book Description

This book covers the latest research in biofilm, infection, and antimicrobial strategies in reducing and treating musculoskeletal, skin, transfusion, implant-related infections, etc. Topics covered include biofilms, small colony variants, antimicrobial biomaterials (antibiotics, antimicrobial peptides, hydrogels, bioinspired interfaces, immunotherapeutic approaches, and more), antimicrobial coatings, engineering and 3D printing, antimicrobial delivery vehicles, and perspectives on clinical impacts. Antibiotic resistance, which shifts the race toward bacteria, and strategies to reduce antibiotic resistance, are also briefly touched on. Combined with its companion volume, Racing for the Surface: Pathogenesis of Implant Infection and Advanced Antimicrobial Strategies, this book bridges the gaps between infection and tissue engineering, and is an ideal book for academic researchers, clinicians, industrial engineers and scientists, governmental representatives in national laboratories, and advanced undergraduate students and post-doctoral fellows who are interested in infection, microbiology, and biomaterials and devices.




Biomaterials and Medical Device - Associated Infections


Book Description

Despite advances in materials and sterilisation, patients who receive biomaterials of medical device implants are still at risk of developing an infection around the implantation site. This book reviews the fundamentals of biomaterials and medical device related infections and methods and materials for the treatment and prevention of infection. The first part of the book provides readers with an introduction to the topic including analyses of biofilms, diagnosis and treatment of infection, pathology and topography. The second part of the book discusses a range of established and novel technologies and materials which have been designed to prevent infection. - Provides analysis of biofilms and their relevance to implant associated infections. - Assesses technologies for controlling biofilms. - Considers advantages and disadvantages of in vivo infection studies.




Biomaterials and Medical Devices


Book Description

This book presents an introduction to biomaterials with the focus on the current development and future direction of biomaterials and medical devices research and development in Indonesia. It is the first biomaterials book written by selected academic and clinical experts experts on biomaterials and medical devices from various institutions and industries in Indonesia. It serves as a reference source for researchers starting new projects, for companies developing and marketing products and for governments setting new policies. Chapter one covers the fundamentals of biomaterials, types of biomaterials, their structures and properties and the relationship between them. Chapter two discusses unconventional processing of biomaterials including nano-hybrid organic-inorganic biomaterials. Chapter three addresses biocompatibility issues including in vitro cytotoxicity, genotoxicity, in vitro cell models, biocompatibility data and its related failure. Chapter four describes degradable biomaterial for medical implants, which include biodegradable polymers, biodegradable metals, degradation assessment techniques and future directions. Chapter five focuses on animal models for biomaterial research, ethics, care and use, implantation study and monitoring and studies on medical implants in animals in Indonesia. Chapter six covers biomimetic bioceramics, natural-based biocomposites and the latest research on natural-based biomaterials in Indonesia. Chapter seven describes recent advances in natural biomaterial from human and animal tissue, its processing and applications. Chapter eight discusses orthopedic applications of biomaterials focusing on most common problems in Indonesia, and surgical intervention and implants. Chapter nine describes biomaterials in dentistry and their development in Indonesia.




Sterilisation of Biomaterials and Medical Devices


Book Description

The effective sterilisation of any material or device to be implanted in or used in close contact with the human body is essential for the elimination of harmful agents such as bacteria. Sterilisation of biomaterials and medical devices reviews established and commonly used technologies alongside new and emerging processes.Following an introduction to the key concepts and challenges involved in sterilisation, the sterilisation of biomaterials and medical devices using steam and dry heat, ionising radiation and ethylene oxide is reviewed. A range of non-traditional sterilisation techniques, such as hydrogen peroxide gas plasma, ozone and steam formaldehyde, is then discussed together with research in sterilisation and decontamination of surfaces by plasma discharges. Sterilisation techniques for polymers, drug-device products and tissue allografts are then reviewed, together with antimicrobial coatings for 'self-sterilisation' and the challenge presented by prions and endotoxins in the sterilisation of reusable medical devices. The book concludes with a discussion of future trends in the sterilisation of biomaterials and medical devices.With its distinguished editors and expert team of international contributors, Sterilisation of biomaterials and medical devices is an essential reference for all materials scientists, engineers and researchers within the medical devices industry. It also provides a thorough overview for academics and clinicians working in this area. - Reviews established and commonly used technologies alongside new and emerging processes - Introduces and reviews the key concepts and challenges involved in sterilisation - Discusses future trends in the sterilisation of biomaterials and medical devices




Materials for Biomedical Engineering


Book Description

MATERIALS FOR BIOMEDICAL ENGINEERING A comprehensive yet accessible introductory textbook designed for one-semester courses in biomaterials Biomaterials are used throughout the biomedical industry in a range of applications, from cardiovascular devices and medical and dental implants to regenerative medicine, tissue engineering, drug delivery, and cancer treatment. Materials for Biomedical Engineering: Fundamentals and Applications provides an up-to-date introduction to biomaterials, their interaction with cells and tissues, and their use in both conventional and emerging areas of biomedicine. Requiring no previous background in the subject, this student-friendly textbook covers the basic concepts and principles of materials science, the classes of materials used as biomaterials, the degradation of biomaterials in the biological environment, biocompatibility phenomena, and the major applications of biomaterials in medicine and dentistry. Throughout the text, easy-to-digest chapters address key topics such as the atomic structure, bonding, and properties of biomaterials, natural and synthetic polymers, immune responses to biomaterials, implant-associated infections, biomaterials in hard and soft tissue repair, tissue engineering and drug delivery, and more. Offers accessible chapters with clear explanatory text, tables and figures, and high-quality illustrations Describes how the fundamentals of biomaterials are applied in a variety of biomedical applications Features a thorough overview of the history, properties, and applications of biomaterials Includes numerous homework, review, and examination problems, full references, and further reading suggestions Materials for Biomedical Engineering: Fundamentals and Applications is an excellent textbook for advanced undergraduate and graduate students in biomedical materials science courses, and a valuable resource for medical and dental students as well as students with science and engineering backgrounds with interest in biomaterials.




Infections in Hematology


Book Description

Infections are among the most frequent complications in patients with hematological malignancies and in those undergoing high-dose chemotherapy and autologous hematopoietic stem cell transplantation. A profound knowledge on the epidemiology, diagnostic approaches, treatment modalities and prophylactic strategies is essential for the clinical management of these complications in patients who are often severely immunocompromised owing to their underlying diseases and in particular, the intensive myelosuppressive chemo and immunotherapy. This textbook provides a clinically oriented, compact and up-to-date overview on infections in hematology patients and their management. The typical pathogens to be considered in different subgroups of patients are identified and further aspects of the microbiological background are explored. Clinical, imaging, and laboratory-based diagnostic techniques are discussed and therapeutic strategies appropriate to different situations are then presented, with due attention to the pitfalls, toxicities and interactions that can arise during antimicrobial treatment. Strategies to prevent infection are also outlined, encompassing antimicrobial prophylaxis, isolation procedures, hospital hygiene, protective immunization and the use of hematopoietic growth factors.