Biomaterials in the Design and Reliability of Medical Devices


Book Description

This book highlights the responsibility of medical device designers and engineers to eliminate sites of failure and to test devices to demonstrate their ultimate safety and efficacy. It also evaluates biomaterials and their properties as related to the design and reliability of medical devices. The principles that are described are readily applicable to the biomaterial scaffolds used for generating tissue-engineered constructs.




Reliable Design of Medical Devices


Book Description

As medical devices increase in complexity, concerns about efficacy, safety, quality, and longevity increase in stride. Introduced nearly a decade ago, Reliable Design of Medical Devices illuminated the path to increased reliability in the hands-on design of advanced medical devices. With fully updated coverage in its Second Edition, this practical guide continues to be the benchmark for incorporating reliability engineering as a fundamental design philosophy. The book begins by rigorously defining reliability, differentiating it from quality, and exploring various aspects of failure in detail. It examines domestic and international regulations and standards in similar depth, including updated information on the regulatory and standards organizations as well as a new chapter on quality system regulation. The author builds on this background to explain product specification, liability and intellectual property, safety and risk management, design, testing, human factors, and manufacturing. New topics include design of experiments, CAD/CAM, industrial design, material selection and biocompatibility, system engineering, rapid prototyping, quick-response manufacturing, and maintainability as well as a new chapter on Six Sigma for design. Supplying valuable insight based on years of successful experience, Reliable Design of Medical Devices, Second Edition leads the way to implementing an effective reliability assurance program and navigating the regulatory minefield with confidence.




Medical Device and Equipment Design


Book Description

The key to profitability and success in both the medical device and the equipment markets often relates to how easy your products are to use. User acceptance and preference frequently is dependent upon ergonomic design. Medical Device and Equipment Design helps you enhance your product design, maximize user acceptance, and minimize potential problems in the marketplace. It provides practical guidance on how to plan and incorporate ergonomic design principles into medical devices and equipment so users intuitively feel comfortable with the product. Design engineers, usability and reliability engineers, software programmers, documentation specialists, product managers, quality engineers, and market/product managers will find this text invaluable in getting usability built into products from the very beginning.




Handbook of Medical Device Design


Book Description

First published in 2001: This handbook has been written to give those professionals working in the development and use of medical devices practical knowledge about biomedical technology, regulations, and their relationship to quality health care.




Biocompatibility and Performance of Medical Devices


Book Description

Biocompatibility and Performance of Medical Devices, Second Edition, provides an understanding of the biocompatibility and performance tests for ensuring that biomaterials and medical devices are safe and will perform as expected in the biological environment. Sections cover key concepts and challenges faced in relation to biocompatibility in medical devices, discuss the evaluation and characterization of biocompatibility in medical devices, describe preclinical performance studies for bone, dental and soft tissue implants, and provide information on the regulation of medical devices in the European Union, Japan and China. The book concludes with a review of histopathology principles for biocompatibility and performance studies. - Presents diverse insights from experts in government, industry and academia - Delivers a comprehensive overview of testing and interpreting medical device performance - Expanded to include new information, including sections on managing extractables, accelerating and simplifying medical device development through screening and alternative biocompatibility methods, and quality strategies which fasten device access to market




Biomaterials


Book Description

With sixty years of combined experience, the authors of this extensively revised book have learned to emphasize the fundamental materials science, structure-property relationships, and biological responses as a foundation for a wide array of biomaterials applications. This edition includes a new chapter on tissue engineering and regenerative medicine, approximately 1900 references to additional reading, extensive tutorial materials on new developments in spinal implants and fixation techniques and theory. It also offers systematic coverage of orthopedic implants, and expanded treatment of ceramic materials and implants.




Biomaterials in Clinical Practice


Book Description

This book covers the properties of biomaterials that have found wide clinical applications, while also reviewing the state-of-the-art in the development towards future medical applications, starting with a brief introduction to the history of biomaterials used in hip arthroplasty. The book then reviews general types of biomaterials – polymers, ceramics, and metals, as well as different material structures such as porous materials and coatings and their applications – before exploring various current research trends, such as biodegradable and porous metals, shape memory alloys, bioactive biomaterials and coatings, and nanometals used in the diagnosis and therapy of cancer. In turn, the book discusses a range of methods and approaches used in connection with biomaterial properties and characterization – chemical properties, biocompatibility, in vivo behaviour characterisation, as well as genotoxicity and mutagenicity – and reviews various diagnostic techniques: histopathological analysis, imagining techniques, and methods for physicochemical and spectroscopic characterization. Properties of stent deployment procedures in cardiovascular surgeries, from aspects of prediction, development and deployment of stent geometries are presented on the basis of novel modelling approaches. The last part of the book presents the clinical applications of biomaterials, together with case studies in dentistry, knee and hip prosthesis. Reflecting the efforts of a multidisciplinary team of authors, gathering chemical engineers, medical doctors, physicists and engineers, it presents a rich blend of perspectives on the application of biomaterials in clinical practice. The book will provide clinicians with an essential review of currently available solutions in specific medical areas, also incorporating non-medical solutions and standpoints, thus offering them a broader selection of materials and implantable solutions. This work is the result of joint efforts of various academic and research institutions participating in WIMB Tempus project, 543898-TEMPUS-1-2013-1-ES-TEMPUS-JPHES, "Development of Sustainable Interrelations between Education, Research and Innovation at WBC Universities in Nanotechnologies and Advanced Materials where Innovation Means Business", co-funded by the Tempus Programme of the European Union.




Erythrocyte Engineering for Drug Delivery and Targeting


Book Description

The International Symposia on Plant Lipids, the 15th of which was held in Okazaki, Japan, in May 12-17, 2002, is held every two years and is the only international meeting in this field. The contributions from the symposium collected in this book represent the most up-to-date research results on plant lipids, including their structure, analysis, biosynthesis, regulation, physiological function, environmental aspects, and biotechnology, obtained world-wide during 2000-2002




Biodesign


Book Description

Recognize market opportunities, master the design process, and develop business acumen with this 'how-to' guide to medical technology innovation. Outlining a systematic, proven approach for innovation - identify, invent, implement - and integrating medical, engineering, and business challenges with real-world case studies, this book provides a practical guide for students and professionals.




Introduction to Biomedical Engineering


Book Description

Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering ethics. Enderle and Bronzino tackle these core topics at a level appropriate for senior undergraduate students and graduate students who are majoring in BME, or studying it as a combined course with a related engineering, biology or life science, or medical/pre-medical course. NEW: Each chapter in the 3rd Edition is revised and updated, with new chapters and materials on compartmental analysis, biochemical engineering, transport phenomena, physiological modeling and tissue engineering. Chapters on peripheral topics have been removed and made avaialblw online, including optics and computational cell biology NEW: many new worked examples within chapters NEW: more end of chapter exercises, homework problems NEW: image files from the text available in PowerPoint format for adopting instructors Readers benefit from the experience and expertise of two of the most internationally renowned BME educators Instructors benefit from a comprehensive teaching package including a fully worked solutions manual A complete introduction and survey of BME NEW: new chapters on compartmental analysis, biochemical engineering, and biomedical transport phenomena NEW: revised and updated chapters throughout the book feature current research and developments in, for example biomaterials, tissue engineering, biosensors, physiological modeling, and biosignal processing NEW: more worked examples and end of chapter exercises NEW: image files from the text available in PowerPoint format for adopting instructors As with prior editions, this third edition provides a historical look at the major developments across biomedical domains and covers the fundamental principles underlying biomedical engineering analysis, modeling, and design Bonus chapters on the web include: Rehabilitation Engineering and Assistive Technology, Genomics and Bioinformatics, and Computational Cell Biology and Complexity