Biomaterials Science and Tissue Engineering


Book Description

Covers key principles and methodologies of biomaterials science and tissue engineering with the help of numerous case studies.




Biomaterials Science and Engineering


Book Description

This book is written for those who would like to advance their knowledge beyond an introductory level of biomaterials or materials science and engineering. This requires one to understand more fully the science of materials, which is, of course, the foundation of biomaterials. The subject matter of this book may be divided into three parts: (1) fundamental structure-property relationships of man-made materials (Chapters 2-5) and natural biological materials, including biocompatibility (Chapters 6 and 7); (2) metallic, ceramic, and polymeric implant materials (Chapters 8-10); and (3) actual prostheses (Chapters 11 and 12). This manuscript was initially organized at Clemson University as classnotes for an introductory graduate course on biomaterials. Since then it has been revised and corrected many times based on experience with graduate students at Clemson and at Tulane University, where I taught for two years, 1981-1983, before joining the University of Iowa. I would like to thank the many people who helped me to finish this book; my son Y oon Ho, who typed all of the manuscript into the Apple Pie word processor; my former graduate students, M. Ackley Loony, W. Barb, D. N. Bingham, D. R. Clarke, J. P. Davies, M. F. DeMane, B. J. Kelly, K. W. Markgraf, N. N. Salman, W. J. Whatley, and S. o. Young; and my colleagues, Drs. W. Cooke, D. D. Moyle (Clemson G. H. Kenner (University of Utah), F. University), W. C. Van Buskirk (Tulane University), and Y.




Biomaterials Science


Book Description

The second edition of this bestselling title provides the most up-to-date comprehensive review of all aspects of biomaterials science by providing a balanced, insightful approach to learning biomaterials. This reference integrates a historical perspective of materials engineering principles with biological interactions of biomaterials. Also provided within are regulatory and ethical issues in addition to future directions of the field, and a state-of-the-art update of medical and biotechnological applications. All aspects of biomaterials science are thoroughly addressed, from tissue engineering to cochlear prostheses and drug delivery systems. Over 80 contributors from academia, government and industry detail the principles of cell biology, immunology, and pathology. Focus within pertains to the clinical uses of biomaterials as components in implants, devices, and artificial organs. This reference also touches upon their uses in biotechnology as well as the characterization of the physical, chemical, biochemical and surface properties of these materials. - Provides comprehensive coverage of principles and applications of all classes of biomaterials - Integrates concepts of biomaterials science and biological interactions with clinical science and societal issues including law, regulation, and ethics - Discusses successes and failures of biomaterials applications in clinical medicine and the future directions of the field - Cover the broad spectrum of biomaterial compositions including polymers, metals, ceramics, glasses, carbons, natural materials, and composites - Endorsed by the Society for Biomaterials




An Introduction To Biomaterials Science And Engineering


Book Description

This book presents a broad scope of the field of biomaterials science and technology, focusing on theory, advances and applications. It is written for those who would like to develop their interest and knowledge towards biomaterials or materials science and engineering. All aspects of biomaterials science are thoroughly addressed, from basic principles of biomaterials, organs and medical devices to advanced topics such as tissue engineering, surface engineering, sterilization techniques, 3D printing and drug delivery systems. Readers are also introduced to major concepts of surface modification techniques, and potential applications of different classes of biomaterials. Multiple-choice questions at the end of every chapter will be helpful for students to test their understanding of each topic, with answers provided at the end of the book.Ultimately, this book offers a one-stop source of information on the essentials of biomaterials and engineering. It is useful both as an introduction and advanced reference on recent advances in the biomaterials field. Suitable readers include undergraduate and graduate students, especially those in Materials Science, Biomedical Engineering and Bioengineering.




Biomaterials and Tissue Engineering


Book Description

The current interest in developing novel materials has motivated an increasing need for biological and medical studies in a variety of dinical applications. Indeed, it is dear that to achieve the requisite mechanical, chemical and biomedical properties, especially for new bioactive materials, it is necessary to develop novel synthesis routes. The tremendous success of materials science in developing new biomaterials and fostering technological innovation arises from its focus on interdisciplinary research and collaboration between materials and medical sciences. Materials scientists seek to relate one natural phenomenon to the basic structures of the materials and to recognize the causes and effects of the phenomena. In this way, they have developed explanations for the changing of the properties, the reactions of the materials to the environment, the interface behaviors between the artificial materials and human tissue, the time effects on the materials, and many other natural occurrences. By the same means, medical scientists have also studied the biological and medical effects of these materials, and generated the knowledge needed to produce useful medical devices. The concept of biomaterials is one of the most important ideas ever generated by the application of materials science to the medical field. In traditional materials research, interest focuses primarilyon the synthesis , structure, and mechanical properties of materials commonly used for structural purposes in industry, for instance in mechanical parts of machinery.




Biomaterials Science and Technology


Book Description

Biomaterials Science and Technology: Fundamentals and Developments presents a broad scope of the field of biomaterials science and technology, focusing on theory, advances, and applications. It reviews the fabrication and properties of different classes of biomaterials such as bioinert, bioactive, and bioresorbable, in addition to biocompatibility. It further details traditional and recent techniques and methods that are utilized to characterize major properties of biomaterials. The book also discusses modifications of biomaterials in order to tailor properties and thus accommodate different applications in the biomedical engineering fields and summarizes nanotechnology approaches to biomaterials. This book targets students in advanced undergraduate and graduate levels in majors related to fields of Chemical Engineering, Materials Engineering and Science, Biomedical Engineering, Bioengineering, and Life Sciences. It assists in understanding major concepts of fabrication, modification, and possible applications of different classes of biomaterials. It is also intended for professionals who are interested in recent advances in the emerging field of biomaterials.




Biomaterials Science


Book Description

The revised edition of the renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science from principles to applications. Biomaterials Science, fourth edition, provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine.This new edition incorporates key updates to reflect the latest relevant research in the field, particularly in the applications section, which includes the latest in topics such as nanotechnology, robotic implantation, and biomaterials utilized in cancer research detection and therapy. Other additions include regenerative engineering, 3D printing, personalized medicine and organs on a chip. Translation from the lab to commercial products is emphasized with new content dedicated to medical device development, global issues related to translation, and issues of quality assurance and reimbursement. In response to customer feedback, the new edition also features consolidation of redundant material to ensure clarity and focus. Biomaterials Science, 4th edition is an important update to the best-selling text, vital to the biomaterials' community. - The most comprehensive coverage of principles and applications of all classes of biomaterials - Edited and contributed by the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials - Fully revised and updated to address issues of translation, nanotechnology, additive manufacturing, organs on chip, precision medicine and much more. - Online chapter exercises available for most chapters




Introduction to Biomaterials


Book Description

A succinct introduction to the field of biomaterials engineering, packed with practical insights.




Biologically Responsive Biomaterials for Tissue Engineering


Book Description

Developments in the area of biomaterials, bionanotechnology, tissue engineering, and medical devices are becoming the core of health care. Almost all medical specialties involve the use of biomaterials, and research plays a key role in the development of new and improved treatment modalities. This volume focuses on several current trends in tissue engineering, remodelling and regeneration. Leading researchers describe the use of nanomaterials to create new functionalities when interfaced with biological molecules or structures. In addition to coverage of basic science and engineering aspects, a range of applications in bionanotechnology are presented, including diagnostic devices, contrast agents, analytical tools, physical therapy applications, and vehicles for targeted drug delivery. The use of polymers, alloys, and composites, or a combination of these, for biomaterials applications in orthopaedics is also explored. These contributions represent essential reading for the biomaterials and biomedical engineering communities, and can serve as instructional course lectures targeted at graduate and post-graduate students.




Biomaterials for Tissue Engineering Applications


Book Description

A concise overview of tissue engineering technologies and materials towards specific applications, both past and potential growth areas in this unique discipline is provided to the reader. The specific area of the biomaterial component used within the paradigm of tissue engineering is examined in detail. This is the first work to specifically covers topics of interest with regards to the biomaterial component. The book is divided into 2 sections: (i) general materials technology (e.g., fibrous tissue scaffolds) and (ii) applications in the engineering of specific tissues (e.g., materials for cartilage tissue engineering). Each chapter covers the fundamentals and reflects not only a review of the literature, but also addresses the future of the topic. The book is intended for an audience of researchers in both industry and academia that are interested in a concise overview regarding the biomaterials component of tissue engineering, a topic that is timely and only growing as a field.