Biomedical Applications of Electroactive Polymer Actuators


Book Description

Giving fundamental information on one of the most promising families of smart materials, electroactive polymers (EAP) this exciting new titles focuses on the several biomedical applications made possible by these types of materials and their related actuation technologies. Each chapter provides a description of the specific EAP material and device configuration used, material processing, device assembling and testing, along with a description of the biomedical application. Edited by well-respected academics in the field of electroactive polymers with contributions from renowned international experts, this is an excellent resource for industrial and academic research scientists, engineers, technicians and graduate students working with polymer actuators or in the fields of polymer science.




Electroactive Polymer (EAP) Actuators as Artificial Muscles


Book Description

Covers the field of EAP with attention to all aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. This second edition covers advances in EAP in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, and carbon nanotube actuators.




Electroactive Polymers for Robotic Applications


Book Description

This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.




Biomedical Technology and Devices, Second Edition


Book Description

Biomedical Technology and Devices, Second Edition focuses on the equipment, devices, and techniques used in modern medicine to diagnose, treat, and monitor human illnesses. Gathering together and compiling the latest information available on medical technology, this revised work adds ten new chapters. It starts with the basics, introducing the history of the thermometer and measuring body temperature, before moving on to a medley of devices that are far more complex. This book explores diverse technological functions and procedures including signal processing, auditory systems, magnetic resonance imaging, ultrasonic and emission imaging, image-guided thermal therapy, medical robotics, shape memory alloys, biophotonics, and tissue engineering. Each chapter offers a description of the technique, its technical considerations, and its use according to its applications and relevant body systems. It can be used as a professional resource, as well as a textbook for undergraduate and graduate students.




Biomedical Applications of Polymeric Materials and Composites


Book Description

With its content taken from only the very latest results, this is an extensive summary of the various polymeric materials used for biomedical applications. Following an introduction listing various functional polymers, including conductive, biocompatible and conjugated polymers, the book goes on to discuss different synthetic polymers that can be used, for example, as hydrogels, biochemical sensors, functional surfaces, and natural degradable materials. Throughout, the focus is on applications, with worked examples for training purposes as well as case studies included. The whole is rounded off with a look at future trends.




Ionic Polymer Metallic Composite Transducers for Biomedical Robotics Applications


Book Description

This book is written for leading edge engineers and researchers, working with non-traditional or smart material based actuators, to help them develop such real world biomedical applications. Electrical, mechanical, mechatronics and control systems engineers will all benefit from the different techniques described in this book. The book may also serve as a reference for advanced research focused undergraduate and postgraduate students.




Piezoelectric Nanomaterials for Biomedical Applications


Book Description

Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.




Biomedical Applications of Polymeric Materials and Composites


Book Description

With its content taken from only the very latest results, this is an extensive summary of the various polymeric materials used for biomedical applications. Following an introduction listing various functional polymers, including conductive, biocompatible and conjugated polymers, the book goes on to discuss different synthetic polymers that can be used, for example, as hydrogels, biochemical sensors, functional surfaces, and natural degradable materials. Throughout, the focus is on applications, with worked examples for training purposes as well as case studies included. The whole is rounded off with a look at future trends.




Dielectric Elastomers as Electromechanical Transducers


Book Description

Dielectric Elastomers as Electromechanical Transducers provides a comprehensive and updated insight into dielectric elastomers; one of the most promising classes of polymer-based smart materials and technologies. This technology can be used in a very broad range of applications, from robotics and automation to the biomedical field. The need for improved transducer performance has resulted in considerable efforts towards the development of devices relying on materials with intrinsic transduction properties. These materials, often termed as "smart or "intelligent, include improved piezoelectrics and magnetostrictive or shape-memory materials. Emerging electromechanical transduction technologies, based on so-called ElectroActive Polymers (EAP), have gained considerable attention. EAP offer the potential for performance exceeding other smart materials, while retaining the cost and versatility inherent to polymer materials. Within the EAP family, "dielectric elastomers, are of particular interest as they show good overall performance, simplicity of structure and robustness. Dielectric elastomer transducers are rapidly emerging as high-performance "pseudo-muscular actuators, useful for different kinds of tasks. Further, in addition to actuation, dielectric elastomers have also been shown to offer unique possibilities for improved generator and sensing devices. Dielectric elastomer transduction is enabling an enormous range of new applications that were precluded to any other EAP or smart-material technology until recently. This book provides a comprehensive and updated insight into dielectric elastomer transduction, covering all its fundamental aspects. The book deals with transduction principles, basic materials properties, design of efficient device architectures, material and device modelling, along with applications. - Concise and comprehensive treatment for practitioners and academics - Guides the reader through the latest developments in electroactive-polymer-based technology - Designed for ease of use with sections on fundamentals, materials, devices, models and applications




Biomimicry Materials and Applications


Book Description

BIOMIMICRY MATERIALS AND APPLICATIONS Since the concept of biomimetics was first developed in 1950, the practical applications of biomimetic materials have created a revolution from biotechnology to medicine and most industrial domains, and are the future of commercial work in nearly all fields. Biomimetic materials are basically synthetic materials or man-made materials which can mimic or copy the properties of natural materials. Scientists have created a revolution by mimicking natural polymers through semi-synthetic or fully synthetic methods. There are different methods to mimic a material, such as copying form and shape, copying the process, and finally mimicking at an ecosystem level. This book comprises a detailed description of the materials used to synthesize and form biomimetic materials. It describes the materials in a way that will be far more convenient and easier to understand. The editors have compiled the book so that it can be used in all areas of research, and it shows the properties, preparations, and applications of biomimetic materials currently being used. Readers of this volume will find that: It introduces the synthesis and formation of biomimetic materials; Provides a thorough overview of many industrial applications, such as textiles, management of plant disease detection, and various applications of electroactive polymers; Presents ideas on sustainability and how biomimicry fits within that arena; Deliberates the importance of biomimicry in novel materials. Audience This is a useful guide for engineers, researchers, and students who work on the synthesis, properties, and applications of existing biomimetic materials in academia and industrial settings.