Biomedical Applications of Polymeric Nanofibers


Book Description

Multiscale Fibrous Scaffolds in Regenerative Medicine, by Sowmya Srinivasan, R. Jayakumar, K. P. Chennazhi, Erica J. Levorson, Antonios G. Mikos and Shantikumar V. Nair; Stem Cells and Nanostructures for Advanced Tissue Regeneration, by Molamma P. Prabhakaran, J. Venugopal, Laleh Ghasemi-Mobarakeh, Dan Kai Guorui Jin and Seeram Ramakrishna; Creating Electrospun Nanofiber-Based Biomimetic Scaffolds for Bone Regeneration, by Eleni Katsanevakis, Xuejun Wen and Ning Zhang; Synthetic/Biopolymer Nanofibrous Composites as Dynamic Tissue Engineering Scaffolds, by J. A. Kluge and R. L. Mauck; Electrospun Fibers as Substrates for Peripheral Nerve Regeneration, by Jörg Mey, Gary Brook, Dorothée Hodde and Andreas Kriebel; Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering, by Vince Beachley, Eleni Katsanevakis, Ning Zhang, Xuejun Wen; Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications, by Pitt Supaphol, Orawan Suwantong, Pakakrong Sangsanoh, Sowmya Srinivasan, Rangasamy Jayakumar and Shantikumar V. Nair; Electrospun Nanofibrous Scaffolds-Current Status and Prospects in Drug Delivery, by M. Prabaharan, R. Jayakumar and S. V. Nair.; Biomedical Applications of Polymer/Silver Composite Nanofibers, by R. Jayakumar, M. Prabaharan, K. T. Shalumon, K. P. Chennazhi and S. V. Nair.-




Electrospun Polymeric Nanofibers


Book Description

This volume deals with the various fabrication techniques, surface functionalization and biomedical applications of polymeric fibers possessing different scale and structure. It provides an overview of fabrication techniques such as Co-axial, Centrifugal, Melt and Yarning to procure multiscale, tubular and layered fibrous scaffold employed for biomedical applications. The chapters in this volume discusse the surface/chemical functionalization of fibers which enhance the biological properties of the fibrous scaffolds as well as the development of hybrid, layered and external stimuli-responsive fibrous scaffolds that hold potential application in biosensor and other biomedical fields. In addition, recent advances and applications of polymeric multiscale fibers in tissue engineering, regenerative medicine and drug delivery are presented. The potential use of fibrous scaffolds in bone, neural, tendon/ligament and cardiac tissue engineering, nanofibers as an antimicrobial wound dressing, employed in cancer theragnostics and in the treatment of skin/periodontal infections are discussed. The volume provides expert knowledge on the fabrication techniques, development of different scale and hybrid structure fibers, surface functionalization, layered and external stimuli responsive fibrous scaffolds. It will be beneficial to material/biomaterials scientists, bioengineering and biotechnologists by providing a better understanding on the subject of the innovative applications of fibrous scaffolds in drug delivery, tissue engineering, wound dressings and regenerative medicine.




Biomedical Applications of Polymeric Nanofibers


Book Description

Multiscale Fibrous Scaffolds in Regenerative Medicine, by Sowmya Srinivasan, R. Jayakumar, K. P. Chennazhi, Erica J. Levorson, Antonios G. Mikos and Shantikumar V. Nair; Stem Cells and Nanostructures for Advanced Tissue Regeneration, by Molamma P. Prabhakaran, J. Venugopal, Laleh Ghasemi-Mobarakeh, Dan Kai Guorui Jin and Seeram Ramakrishna; Creating Electrospun Nanofiber-Based Biomimetic Scaffolds for Bone Regeneration, by Eleni Katsanevakis, Xuejun Wen and Ning Zhang; Synthetic/Biopolymer Nanofibrous Composites as Dynamic Tissue Engineering Scaffolds, by J. A. Kluge and R. L. Mauck; Electrospun Fibers as Substrates for Peripheral Nerve Regeneration, by Jörg Mey, Gary Brook, Dorothée Hodde and Andreas Kriebel; Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering, by Vince Beachley, Eleni Katsanevakis, Ning Zhang, Xuejun Wen; Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications, by Pitt Supaphol, Orawan Suwantong, Pakakrong Sangsanoh, Sowmya Srinivasan, Rangasamy Jayakumar and Shantikumar V. Nair; Electrospun Nanofibrous Scaffolds-Current Status and Prospects in Drug Delivery, by M. Prabaharan, R. Jayakumar and S. V. Nair.; Biomedical Applications of Polymer/Silver Composite Nanofibers, by R. Jayakumar, M. Prabaharan, K. T. Shalumon, K. P. Chennazhi and S. V. Nair.-




Biomedical Applications of Polymeric Materials and Composites


Book Description

With its content taken from only the very latest results, this is an extensive summary of the various polymeric materials used for biomedical applications. Following an introduction listing various functional polymers, including conductive, biocompatible and conjugated polymers, the book goes on to discuss different synthetic polymers that can be used, for example, as hydrogels, biochemical sensors, functional surfaces, and natural degradable materials. Throughout, the focus is on applications, with worked examples for training purposes as well as case studies included. The whole is rounded off with a look at future trends.




Advanced Nanofibrous Materials Manufacture Technology based on Electrospinning


Book Description

This book comprehensively addresses advanced nanofiber manufacturing based on electrospinning technology. The principles, relationships between process parameters and structure, morphology and performance of electrospun nanofibers and nanomaterials, and the methods for enhanced field intensity and uniform distribution are discussed. The electric field intensity and distribution during electrospinning is also analyzed based on finite element analysis on both the needle and the needleless electrospinning. Furthermore, the modification techniques for improved nanomaterials strength are covered, aiming to provide effective avenues towards the manufacture of stronger nanofiber or nanomaterial products.




Nanoengineering of Biomaterials


Book Description

A comprehensive discussion of various types of nanoengineered biomaterials and their applications In Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, an expert team of chemists delivers a succinct exploration of the synthesis, characterization, in-vitro and in-vivo drug molecule release, pharmacokinetic activity, pharmacodynamic activity, and the biomedical applications of several types of nanoengineered biomaterials. The editors have also included resources to highlight the most current developments in the field. The book is a collection of valuable and accessible reference sources for researchers in materials chemistry and related disciplines. It uses a functions-directed approach to using organic and inorganic source compounds that translate into biological systems as scaffolds, micelles, dendrimers, and other delivery systems. Nanoengineering of Biomaterials offers readers up-to-date chemistry and material science insights that are readily transferrable to biomedical systems. The book also includes: Thorough introductions to alginate nanoparticle delivery of therapeutics and chitosan-based nanomaterials in biological applications Comprehensive explorations of nanostructured carrageenan as a drug carrier, gellan gum nanoparticles in drug delivery, and guar-gum nanoparticles in the delivery of bioactive molecules Practical discussions of protein-based nanoparticles for drug delivery, solid lipid nanoparticles as drug carriers, and pH-responsive nanoparticles in therapy In-depth examinations of stimuli-responsive nano carriers in drug targeting Perfect for pharmaceutical chemists, materials scientists, polymer chemists, life scientists, and medicinal chemists, Nanoengineering of Biomaterials: Drug Delivery and Biomedical Applications is also an indispensable resource for biologists and bioengineers seeking a one-stop reference on the transferability of materials chemistry and nanotechnology to biomedicine.




Handbook of Nanofibers


Book Description

This Handbook covers all aspects related to Nanofibers, from the experimental set-up for their fabrication to their potential industrial applications. It describes several kinds of nanostructured fibers such as metal oxides, natural polymers, synthetic polymers and hybrid inorganic-polymers or carbon-based materials. The first part of the Handbook covers the fundamental aspects, experimental setup, synthesis, properties and physico-chemical characterization of nanofibers. Specifically, this part details the history of nanofibers, different techniques to design nanofibers, self-assembly in nanofibers, critical parameters of synthesis, fiber alignment, modeling and simulation, types and classifications of nanofibers, and signature physical and chemical properties (i.e. mechanical, electrical, optical and magnetic), toxicity and regulations, bulk and surface functionalization and other treatments to allow them to a practical use. Characterization methods are also deeply discussed here. The second part of the Handbook deals with global markets and technologies and emerging applications of nanofibers, such as in energy production and storage, aerospace, automotive, sensors, smart textile design, energy conversion, tissue engineering, medical implants, pharmacy and cosmetics. Attention is given to the future of research in these areas in order to improve and spread the applications of nanofibers and their commercialization.







Electrospun Nanofibers


Book Description

Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science




Natural and Synthetic Biomedical Polymers


Book Description

Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals. As a result, the demand for biomedical polymers has grown exponentially and supports a diverse and highly monetized research community. Currently worth $1.2bn in 2009 (up from $650m in 2000), biomedical polymers are expected to achieve a CAGR of 9.8% until 2015, supporting a current research community of approximately 28,000+. Summarizing the main advances in biopolymer development of the last decades, this work systematically covers both the physical science and biomedical engineering of the multidisciplinary field. Coverage extends across synthesis, characterization, design consideration and biomedical applications. The work supports scientists researching the formulation of novel polymers with desirable physical, chemical, biological, biomechanical and degradation properties for specific targeted biomedical applications. Combines chemistry, biology and engineering for expert and appropriate integration of design and engineering of polymeric biomaterials Physical, chemical, biological, biomechanical and degradation properties alongside currently deployed clinical applications of specific biomaterials aids use as single source reference on field. 15+ case studies provides in-depth analysis of currently used polymeric biomaterials, aiding design considerations for the future