Engineering in Translational Medicine


Book Description

This book covers a broad area of engineering research in translational medicine. Leaders in academic institutions around the world contributed focused chapters on a broad array of topics such as: cell and tissue engineering (6 chapters), genetic and protein engineering (10 chapters), nanoengineering (10 chapters), biomedical instrumentation (4 chapters), and theranostics and other novel approaches (4 chapters). Each chapter is a stand-alone review that summarizes the state-of-the-art of the specific research area. Engineering in Translational Medicine gives readers a comprehensive and in-depth overview of a broad array of related research areas, making this an excellent reference book for scientists and students both new to engineering/translational medicine and currently working in this area. The ability for engineering approaches to change biomedical research are increasing and having significant impact. Development of basic assays and their numerous applications are allowing for many new discoveries and should eventually impact human health. This book brings together many diverse yet related topics to give the reader a solid overview of many important areas that are not found together elsewhere. Dr. Weibo Cai has taken great care to select key research leaders of many sub-disciplines who have put together very detailed chapters that are easy to read yet highly rich in content. _______________ This book brings together many diverse yet related topics to give the reader a solid overview of many important areas that are not found together elsewhere. Dr. Weibo Cai has taken great care to select key research leaders of many sub-disciplines who have put together very detailed chapters that are easy to read yet highly rich in content. It is very exciting to see such a great set of chapters all together to allow one to have a key understanding of many different areas including cell, gene, protein, and nano engineering as well as the emerging field of theranostics. I am sure the readers will find this collection of important chapters helpful in their own research and understanding of how engineering has and will continue to play a critical role in biomedical research and clinical translation. Sanjiv Sam Gambhir M.D., Ph.D. Stanford University, USA Engineering in Translational Medicine is a landmark book bridging the fields of engineering and medicine with a focus on translational technologies and methods. In a single, well-coordinated volume, this book brings together contributions from a strong and international scientific cast, broadly covering the topics. The book captures the tremendous opportunities made possible by recent developments in bioengineering, and highlights the potential impact of these advances across a broad spectrum of pressing health care needs. The book can equally serve as a text for graduate level courses, a reference source, a book to be dipped into for pleasure by those working within the field, or a cover-to-cover read for those wanting a comprehensive, yet readable introduction to the current state of engineering advances and how they are impacting translational medicine. Simon R. Cherry, Ph.D. University of California, Davis, USA







Translational Medicine - What, Why and How


Book Description

This book is the first to provide an aerial view, as well as detailed information, on 'how' activities in translational medicine are under development in countries such as the USA, China, the UK, and Taiwan. Institutions in each country are training investigators to work as sophisticated interdisciplinary teams. Investigators from 11 US academic health centers explain how they are incentivizing collaborations through pilot project programs, forming partnerships with business schools to promote efficient management of basic and clinical research, creating ethical, high- value public-private (industry) partnerships, improving efficiency with utilization of informatics, and engaging the community in research. The essential role of evaluation is explained in a clear and concise manner. The readers will also learn about the role of private funding in Taiwan and the vision of the government in China in developing multiple translational research centers. The UK is developing methodical approaches to patient needs across their lifespans; ongoing innovation is encouraged through incubator programs. With the emphasis on open innovation and sharing, the concepts and practice of translational medicine are spreading rapidly on an international scale.




Biomedical Translational Research


Book Description

This book, which is the first volume of Biomedical Translational Research, summarizes emerging technologies in healthcare. The book reviews the advancements in biomedical sciences in genomics, immunology, stem cell, tissue engineering, nanotechnology, computational and structural biology, biomedical engineering, and telemedicine biology. The book highlights the applications of artificial intelligence in the diagnosis of infectious diseases and examines the role of system biology approaches for understanding human complexity, variability, and its influence on health and diseases. It presents the applications of flow cytometry in monitoring the progression and treatment of disease. It covers emerging technologies in cancer research, including CRISPR-Cas9, NGS, and nanotechnology. This book is a useful source of information for clinical researchers, basic scientists, biomedical engineers, and computational biologists.




Introduction to Biomedical Engineering


Book Description

"New, revised edition of the most comprehensive book for bioengineering students and professionals." -- Prové de l'editor.




Biomaterials in Translational Medicine


Book Description

Biomaterials in Translational Medicine delivers timely and detailed information on the latest advances in biomaterials and their role and impact in translational medicine. Key topics addressed include the properties and functions of these materials and how they might be applied for clinical diagnosis and treatment. Particular emphasis is placed on basic fundamentals, biomaterial formulations, design principles, fabrication techniques and transitioning bench-to-bed clinical applications. The book is an essential reference resource for researchers, clinicians, materials scientists, engineers and anyone involved in the future development of innovative biomaterials that drive advancement in translational medicine. Systematically introduces the fundamental principles, rationales and methodologies of creating or improving biomaterials in the context of translational medicine Includes the translational or commercialization status of these new biomaterials Provides the reader with enough background knowledge for a fundamental grip of the difficulties and technicalities of using biomaterial translational medicine Directs the reader on how to find other up-to-date sources (i.e. peer reviewed journals) in the field of translational medicine and biomaterials




Bioengineering


Book Description

This book explores critical principles and new concepts in bioengineering, integrating the biological, physical and chemical laws and principles that provide a foundation for the field. Both biological and engineering perspectives are included, with key topics such as the physical-chemical properties of cells, tissues and organs; principles of molecules; composition and interplay in physiological scenarios; and the complex physiological functions of heart, neuronal cells, muscle cells and tissues. Chapters evaluate the emerging fields of nanotechnology, drug delivery concepts, biomaterials, and regenerative therapy. The leading individuals and events are introduced along with their critical research. Bioengineering: A Conceptual Approach is a valuable resource for professionals or researchers interested in understanding the central elements of bioengineering. Advanced-level students in biomedical engineering and computer science will also find this book valuable as a secondary textbook or reference.




Principles of Translational Science in Medicine


Book Description

Principles of Translational Science in Medicine: From Bench to Bedside, Second Edition, provides an update on major achievements in the translation of research into medically relevant results and therapeutics. The book presents a thorough discussion of biomarkers, early human trials, and networking models, and includes institutional and industrial support systems. It also covers algorithms that have influenced all major areas of biomedical research in recent years, resulting in an increasing numbers of new chemical/biological entities (NCEs or NBEs) as shown in FDA statistics. The book is ideal for use as a guide for biomedical scientists to establish a systematic approach to translational medicine. Provides an in-depth description of novel tools for the assessment of translatability of trials to balance risk and improve projects at any given stage of product development New chapters deal with translational issues in the fastest growing population (the elderly), case studies, translatability assessment tools, and advances in nanotherapies Details IPR issues of translation, especially for public-private-partnerships Contains contributions from world leaders in translational medicine, including the former NIH director and authorities from various European regulatory institutions




Introduction to Biomedical Engineering


Book Description

Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering ethics. Enderle and Bronzino tackle these core topics at a level appropriate for senior undergraduate students and graduate students who are majoring in BME, or studying it as a combined course with a related engineering, biology or life science, or medical/pre-medical course. NEW: Each chapter in the 3rd Edition is revised and updated, with new chapters and materials on compartmental analysis, biochemical engineering, transport phenomena, physiological modeling and tissue engineering. Chapters on peripheral topics have been removed and made avaialblw online, including optics and computational cell biology NEW: many new worked examples within chapters NEW: more end of chapter exercises, homework problems NEW: image files from the text available in PowerPoint format for adopting instructors Readers benefit from the experience and expertise of two of the most internationally renowned BME educators Instructors benefit from a comprehensive teaching package including a fully worked solutions manual A complete introduction and survey of BME NEW: new chapters on compartmental analysis, biochemical engineering, and biomedical transport phenomena NEW: revised and updated chapters throughout the book feature current research and developments in, for example biomaterials, tissue engineering, biosensors, physiological modeling, and biosignal processing NEW: more worked examples and end of chapter exercises NEW: image files from the text available in PowerPoint format for adopting instructors As with prior editions, this third edition provides a historical look at the major developments across biomedical domains and covers the fundamental principles underlying biomedical engineering analysis, modeling, and design Bonus chapters on the web include: Rehabilitation Engineering and Assistive Technology, Genomics and Bioinformatics, and Computational Cell Biology and Complexity




Biomedical Translational Research


Book Description

This book, which is the third volume of Biomedical translational research, focuses on the fundamental role of biomedical research in developing new medicinal products. It emphasizes the importance of understanding biological and pathophysiological mechanisms underlying the disease to discover and develop new biological agents. The book uniquely explores the genomic computational integrative approach for drug repositioning. Further, it discusses the health benefits of nutraceuticals and their application in human diseases. Further, the book comprehensively reviews different computational approaches that employ GWAS data to guide drug repositioning. Finally, it summarizes the major challenges in drug development and the strategies for the rational design of the next generation more effective but less toxic therapeutic agents.