Biomedical Ethics for Engineers


Book Description

Biomedical Ethics for Engineers provides biomedical engineers with a new set of tools and an understanding that the application of ethical measures will seldom reach consensus even among fellow engineers and scientists. The solutions are never completely technical, so the engineer must continue to improve the means of incorporating a wide array of societal perspectives, without sacrificing sound science and good design principles. Dan Vallero understands that engineering is a profession that profoundly affects the quality of life from the subcellular and nano to the planetary scale. Protecting and enhancing life is the essence of ethics; thus every engineer and design professional needs a foundation in bioethics. In high-profile emerging fields such as nanotechnology, biotechnology and green engineering, public concerns and attitudes become especially crucial factors given the inherent uncertainties and high stakes involved. Ethics thus means more than a commitment to abide by professional norms of conduct. This book discusses the full suite of emerging biomedical and environmental issues that must be addressed by engineers and scientists within a global and societal context. In addition it gives technical professionals tools to recognize and address bioethical questions and illustrates that an understanding of the application of these measures will seldom reach consensus even among fellow engineers and scientists. · Working tool for biomedical engineers in the new age of technology · Numerous case studies to illustrate the direct application of ethical techniques and standards · Ancillary materials available online for easy integration into any academic program




Biomedical Ethics for Engineers


Book Description

Biomedical Ethics for Engineers provides biomedical engineers with a new set of tools and an understanding that the application of ethical measures will seldom reach consensus even among fellow engineers and scientists. The solutions are never completely technical, so the engineer must continue to improve the means of incorporating a wide array of societal perspectives, without sacrificing sound science and good design principles.Dan Vallero understands that engineering is a profession that profoundly affects the quality of life from the subcellular and nano to the planetary scale. Protecting and enhancing life is the essence of ethics; thus every engineer and design professional needs a foundation in bioethics. In high-profile emerging fields such as nanotechnology, biotechnology and green engineering, public concerns and attitudes become especially crucial factors given the inherent uncertainties and high stakes involved. Ethics thus means more than a commitment to abide by professional norms of conduct. This book discusses the full suite of emerging biomedical and environmental issues that must be addressed by engineers and scientists within a global and societal context. In addition it gives technical professionals tools to recognize and address bioethical questions and illustrates that an understanding of the application of these measures will seldom reach consensus even among fellow engineers and scientists. · Working tool for biomedical engineers in the new age of technology· Numerous case studies to illustrate the direct application of ethical techniques and standards· Ancillary materials available online for easy integration into any academic program




Ethics for Biomedical Engineers


Book Description

Over the last few decades, there are increasing public awareness of adverse events involving engineering failures that not only led to monetary losses but also more importantly, human injuries and deaths. Whilst it is vital for an engineering professional or student to acquire the necessary technical knowledge and skills in their respective field, they must also understand the ethical essences that are relevant to their profession. Engineering professionals like biomedical engineers, need to appreciate the fundamentals of best practices and recognise how any derivation from such practices can have undesirable impacts on human lives. Through this book, it is hoped that readers would draw the relevance between the study of ethics and biomedical engineering. The book would be a useful source and reference for college-level and university-level students. Moreover, the contents are written so as to also provide valuable insights even for existing biomedical engineers and those enrolled in continual engineering education programs.




Ethics for Bioengineers


Book Description

Increasingly, biomedical scientists and engineers are involved in projects, design, or research and development that involve humans or animals. The book presents general concepts on professionalism and the regulation of the profession of engineering, including a discussion on what is ethics and moral conduct, ethical theories and the codes of ethics that are most relevant for engineers. An ethical decision-making process is suggested. Other issues such as conflicts of interest, plagiarism, intellectual property, confidentiality, privacy, fraud, and corruption are presented. General guidelines, the process for obtaining ethics approval from Ethics Review Boards, and the importance of obtaining informed consent from volunteers recruited for studies are presented. A discussion on research with animals is included. Ethical dilemmas focus on reproductive technologies, stem cells, cloning, genetic testing, and designer babies. The book includes a discussion on ethics and the technologies of body enhancement and of regeneration. The importance of assessing the impact of technology on people, society, and on our planet is stressed. Particular attention is given to nanotechnologies, the environment, and issues that pertain to developing countries. Ideas on gender, culture, and ethics focus on how research and access to medical services have, at times, been discriminatory towards women. The cultural aspects focus on organ transplantation in Japan, and a case study of an Aboriginal child in Canada; both examples show the impact that culture can have on how care is provided or accepted. The final section of the book discusses data collection and analysis and offers a guideline for honest reporting of results, avoiding fraud, or unethical approaches. The appendix presents a few case studies where fraud and/or unethical research have occurred. Table of Contents: Introduction to Ethics / Experiments with Human Subjects or Animals / Examples of Ethical Dilemmas in Biomedical Research / Technology and Society / Gender, Culture, and Ethics / Data Collection and Analysis




Ethics in Engineering Practice and Research


Book Description

The first edition of Caroline Whitbeck's Ethics in Engineering Practice and Research focused on the difficult ethical problems engineers encounter in their practice and in research. In many ways, these problems are like design problems: they are complex, often ill defined; resolving them involves an iterative process of analysis and synthesis; and there can be more than one acceptable solution. In the second edition of this text, Dr Whitbeck goes above and beyond by featuring more real-life problems, stating recent scenarios and laying the foundation of ethical concepts and reasoning. This book offers a real-world, problem-centered approach to engineering ethics, using a rich collection of open-ended case studies to develop skill in recognizing and addressing ethical issues.




Human resources for medical devices - the role of biomedical engineers


Book Description

This publication addresses the role of the biomedical engineer in the development, regulation, management, training, and use of medical devices. The first part of the book looks at the biomedical engineering profession globally as part of the health workforce: global numbers and statistics, professional classification, general education and training, professional associations, and the certification process. The second part addresses all of the different roles that the biomedical engineer can have in the life cycle of the technology, from research and development, and innovation, mainly undertaken in academia; the regulation of devices entering the market; and the assessment or evaluation in selecting and prioritizing medical devices (usually at national level); to the role they play in the management of devices from selection and procurement to safe use in healthcare facilities. The annexes present comprehensive information on academic programs, professional societies, and relevant WHO and UN documents related to human resources for health as well as the reclassification proposal for ILO. This publication can be used to encourage the availability, recognition, and increased participation of biomedical engineers as part of the health workforce, particularly following the recent adoption of the recommendations of the UN High-Level Commission on Health Employment and Economic Growth, the WHO Global Strategy on Human Resources for Health, and the establishment of national health workforce accounts. The document also supports the aim of reclassification of the role of the biomedical engineer as a specific engineer that supports the development, access, and use of medical devices within the national, regional, and global occupation classification system.




Introduction to Biomedical Engineering


Book Description

Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use




Biomedical Engineering Principles


Book Description

Current demand in biomedical sciences emphasizes the understanding of basic mechanisms and problem solving rather than rigid empiricism and factual recall. Knowledge of the basic laws of mass and momentum transport as well as model development and validation, biomedical signal processing, biomechanics, and capstone design have indispensable roles i




Ethics in Engineering


Book Description

What is ethics in engineering? Engineers develop technology that has a major impact, positive and negative, on people and the environment. This means that engineers must take a stand and make moral judgements. Also, they need to take other stakeholders into consideration employees, owners, customers and suppliers who might have conflicting interests. In this book a practical, hands-on process for handling ethical dilemmas is presented: awareness, responsibility, critical thinking and action. The author gives many examples from engineering areas ranging from construction to transhumanism. In a recurring case you as a reader think through each of the steps in the process: to develop or not develop the Life Partner. What is good and evil, right and wrong? That is the question.




The Experiences and Challenges of Science and Ethics


Book Description

In April 2002, the U.S. National Academies hosted an interacademy workshop involving participants from the United States and Iran on the topic of Science and Ethics. The explicit purposes of the workshop were (a) to engage important members of the American and Iranian scientific communities in meaningful discussions of the topic of science and ethics and particularly differences in the approaches in the west and in Islamic countries in general and Iran in particular, (b) to encourage greater participation by Iranian scientists in international scientific discussions by exposing them to seasoned veterans in international meetings, and (c) to identify specific topics and approaches that could be carried out by the Academies in the two countries to contribute to international understanding of the importance of considering the ethical dimensions of scientific research and related activities. This report includes documents prepared by four breakout groups and a statement on priority areas for future interacademy cooperation developed at the final plenary session. Also included are background papers prepared by some participants prior to the workshop that were not previously published.