Beyond Technonationalism


Book Description

The biomedical industry, which includes biopharmaceuticals, genomics and stem cell therapies, and medical devices, is among the fastest growing worldwide. While it has been an economic development target of many national governments, Asia is currently on track to reach the epicenter of this growth. What accounts for the rapid and sustained economic growth of biomedicals in Asia? To answer this question, Kathryn Ibata-Arens integrates global and national data with original fieldwork to present a conceptual framework that considers how national governments have managed key factors, like innovative capacity, government policy, and firm-level strategies. Taking China, India, Japan, and Singapore in turn, she compares each country's underlying competitive advantages. What emerges is an argument that countries pursuing networked technonationalism (NTN) effectively upgrade their capacity for innovation and encourage entrepreneurial activity in targeted industries. In contrast to countries that engage in classic technonationalism—like Japan's developmental state approach—networked technonationalists are global minded to outside markets, while remaining nationalistic within the domestic economy. By bringing together aggregate data at the global and national level with original fieldwork and drawing on rich cases, Ibata-Arens telegraphs implications for innovation policy and entrepreneurship strategy in Asia—and beyond.




Biomedical Innovation in India


Book Description




Innovations in Biomedical Engineering


Book Description

This book presents the latest developments in the field of biomedical engineering and includes practical solutions and strictly scientific considerations. The development of new methods of treatment, advanced diagnostics or personalized rehabilitation requires close cooperation of experts from many fields, including, among others, medicine, biotechnology and finally biomedical engineering. The latter, combining many fields of science, such as computer science, materials science, biomechanics, electronics not only enables the development and production of modern medical equipment, but also participates in the development of new directions and methods of treatment. The presented monograph is a collection of scientific papers on the use of engineering methods in medicine. The topics of the work include both practical solutions and strictly scientific considerations expanding knowledge about the functioning of the human body. We believe that the presented works will have an impact on the development of the field of science, which is biomedical engineering, constituting a contribution to the discussion on the directions of development of cooperation between doctors, physiotherapists and engineers. We would also like to thank all the people who contributed to the creation of this monograph—both the authors of all the works and those involved in technical works.




Biomedical Innovation in Fertility Care


Book Description

Available Open Access digitally under CC-BY-NC-ND licence. This book analyses the clashes between evidence-based medicine and the dynamics of an increasingly privatised fertility care industry. With a unique focus on "add-on" treatments, it reveals how these controversial treatments are now widespread and can border on hopemongering.




Biodesign


Book Description

Recognize market opportunities, master the design process, and develop business acumen with this 'how-to' guide to medical technology innovation. Outlining a systematic, proven approach for innovation - identify, invent, implement - and integrating medical, engineering, and business challenges with real-world case studies, this book provides a practical guide for students and professionals.




Biomedical Innovations to Combat COVID-19


Book Description

Biomedical Innovations to Combat COVID-19 provides an updated overview on the development of vaccines, antiviral drugs and nanomaterials, and diagnostic methods for the fight against COVID-19. Perspectives on such technologies are identified, discussed, and enriched with figures for easy understanding and applicability. Furthermore, it contains basic aspects of virology, immunology, and antiviral drugs that are needed to fully appreciate these innovations. This book is split into four sections: introduction, presenting basic virologic and epidemiological aspects of COVID-19; vaccines against COVID-19, discussing their different types and applications used to develop them; diagnostic approaches for SARS-CoV-2, encompassing advanced sensing and microfluidic-based biosensors; and drug development and delivery, where antivirals based on nanomaterials or drugs are presented. It is a valuable source for virologists, biotechnologists, and members of biomedical field interested in learning more about how novel technologies can be applied to fasten the eradication of the COVID-19 and similar pandemics. - Presents updated literature coverage summarizing the most relevant information on COVID-19 - Written by experts from diverse scientific domains in order to provide readers with a thorough view on the subject - Encompasses tables, figures and information trees especially developed for the book in order to condense and highlight key points for quick reference




Innovation and Invention in Medical Devices


Book Description

The objective of the workshop that is the subject of this summary report was to present the challenges and opportunities for medical devices as perceived by the key stakeholders in the field. The agenda, and hence the summaries of the presentations that were made in the workshop and which are presented in this summary report, was organized to first examine the nature of innovation in the field and the social and economic infrastructure that supports such innovation. The next objective was to identify and discuss the greatest unmet clinical needs, with a futuristic view of technologies that might meet those needs. And finally, consideration was given to the barriers to the application of new technologies to meet clinical needs.




Developing Biomedical Devices


Book Description

During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the development of devices and products for healthcare, it presents a brief description of the human body, covering anatomy and physiology, that will assist the reader in understanding the origin of biosignals, their significance and the technology to be used in their measurement. Issues concerning IPR and protections are also fully discussed, with examples and opportunities for IPR exploitation.




Implementing Biomedical Innovations into Health, Education, and Practice


Book Description

Our increased understanding of health and disease coupled with major technologic advances has resulted in rapid and significant changes in the practice of medicine. How we prepare physicians for clinical practice 20, 30, or 40 years from now is of paramount importance to medical educators, to the future professionals, and to society at large. Implementing Biomedical Innovations into Health, Education, and Practice delves into this important question, discussing the effects of precision medicine, bioinformatics, biologic and environmental forces, and societal shifts on the physician's approach to diagnosis and therapy. The author interviewed world-renowned physicians, medical educators, healthcare leaders, and research professionals—their insights and quotes are woven throughout the narrative. Professionally illustrated, this relevant resource is a must-have for all medical professionals who incorporate technology and biomedical innovations in their research and clinical practice. It encourages thoughtful analysis on adapting and developing the foundational knowledge, skills, and aptitudes of future physicians and other healthcare professionals, and it belongs in your library. "Having completed deanship at one of America's leading medical schools, Jim Woolliscroft produces an insightful, contemplative projection of the likely skill and behavioral needs of the physician workforce for the mid-21st century...The result is a playbook for physician training that responds effectively to the daunting challenges faced in the coming transformation of the role of physicians in protecting the health of our nation. James L. Madara, MD, CEO, American Medical Association "Dr. Woolliscroft's provocative new book will become must reading for all who are serious about educating the next generation of physicians and health care leaders. Leveraging his own experience as a consummate educator and interviews with numerous thought leaders, he identifies the uncertainties, challenges and disruptions to the practice of medicine in the decades ahead. The implications and imperatives for the coming generations of physicians are compelling and of critical importance for care givers, policy makers, and most pointedly educators in the U.S. and around the world. Gary S. Kaplan MD, Chairman and CEO, Virginia Mason Health System "This ambitious masterpiece, by one of the leading medical educators of our time, fully captures the ongoing changes and disruptions in medicine today, and how they will influence the care of patients and the training of young physicians in the future. Eric Topol, MD, Executive Vice President, Scripps Research, Author of Deep Medicine - Discusses likely technologic disruptors: sensors, AI, machine learning, and robotics - Highlights microbiota, genetics, molecular biology, gene therapy, and regenerative and precision medicine as likely disruptors - Presents an intriguing set of scenarios depicting the life of future physicians




Managing Discovery in the Life Sciences


Book Description

In this book, distinguished scholars Philip A. Rea, Mark V. Pauly, and Lawton R. Burns explore the science and management behind marketable biomedical innovations. They look at how the science actually played out through the interplay of personalities, the cultures within and between academic and corporate entities, and the significance of serendipity not as a mysterious phenomenon but one intrinsic to the successes and failures of the experimental approach. With newly aggregated data and case studies, they consider the fundamental economic underpinnings of investor-driven discovery management, not as an obstacle or deficiency as its critics would contend or as something beyond reproach as some of its proponents might claim, but as the only means by which scientists and managers can navigate the unknowable to discover new products and decide how to sell them so as to maximize the likelihood of establishing a sustainable pipeline for still more marketable biomedical innovations.