Introduction to Biomedical Engineering Technology


Book Description

This new edition provides major revisions to a text that is suitable for the introduction to biomedical engineering technology course offered in a number of technical institutes and colleges in Canada and the US. Each chapter has been thoroughly updated with new photos and illustrations which depict the most modern equipment available in medical technology. This third edition includes new problem sets and examples, detailed block diagrams and schematics and new chapters on device technologies and information technology.




Biomedical Engineering


Book Description

In the context of an aging society and the challenges posed by the COVID-19 pandemic, ensuring a healthy life expectancy has become a pressing social concern. Amidst the pandemic's impact on medical systems worldwide, the need for advancements in early diagnosis, minimally invasive treatments, and infectious disease countermeasures has been reaffirmed. The demand for practical solutions, including new drugs, medical devices, and healthcare systems, is vocalized by healthcare professionals. To address these challenges, engineering researchers play a crucial role in swiftly translating their technological innovations into medical applications. In this book, cutting-edge researchers introduce biomedical engineering from materials, devices, imaging, and information. The chapter contributors are major members of the Research Center for Biomedical Engineering, Japan. This text discusses topics on biomaterials (Chapters 1 to 3), medical devices (Chapters 4 to 11), basic medicine and dentistry (Chapters 12 to 15), and medical systems (Chapters 16 and 17). All of the topics are important areas in biomedical engineering.




Biomedical Information Technology


Book Description

Biomedical Information Technology, Second Edition, contains practical, integrated clinical applications for disease detection, diagnosis, surgery, therapy and biomedical knowledge discovery, including the latest advances in the field, such as biomedical sensors, machine intelligence, artificial intelligence, deep learning in medical imaging, neural networks, natural language processing, large-scale histopathological image analysis, virtual, augmented and mixed reality, neural interfaces, and data analytics and behavioral informatics in modern medicine. The enormous growth in the field of biotechnology necessitates the utilization of information technology for the management, flow and organization of data. All biomedical professionals can benefit from a greater understanding of how data can be efficiently managed and utilized through data compression, modeling, processing, registration, visualization, communication and large-scale biological computing. Presents the world's most recognized authorities who give their "best practices" Provides professionals with the most up-to-date and mission critical tools to evaluate the latest advances in the field Gives new staff the technological fundamentals and updates experienced professionals with the latest practical integrated clinical applications




Introduction to Biomedical Engineering


Book Description

Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering* New chapters on Computational Biology, Medical Imaging, Genomics, and Bioinformatics* Companion site: http://intro-bme-book.bme.uconn.edu/* MATLAB and SIMULINK software used throughout to model and simulate dynamic systems* Numerous self-study homework problems and thorough cross-referencing for easy use




Biomedical Engineering and Information Systems: Technologies, Tools and Applications


Book Description

"Bridging the disciplines of engineering and medicine, this book informs researchers, clinicians, and practitioners of the latest developments in diagnostic tools, decision support systems, and intelligent devices that impact and redefine research in and delivery of medical services"--Provided by publisher.




Biomedical Engineering


Book Description

The second edition of this popular introductory undergraduate textbook uses examples, applications, and profiles of biomedical engineers to show students the relevance of the theory and how it can be used to solve real problems in human medicine. The essential molecular biology, cellular biology, and human physiology background is included for students to understand the context in which biomedical engineers work. Updates throughout highlight important advances made over recent years, including iPS cells, microRNA, nanomedicine, imaging technology, biosensors, and drug delivery systems, giving students a modern description of the various subfields of biomedical engineering. Over two hundred quantitative and qualitative exercises, many new to this edition, help consolidate learning, whilst a solutions manual, password-protected for instructors, is available online. Finally, students can enjoy an expanded set of leader profiles in biomedical engineering within the book, showcasing the broad range of career paths open to students who make biomedical engineering their calling.




Biomedical Science, Engineering and Technology


Book Description

This innovative book integrates the disciplines of biomedical science, biomedical engineering, biotechnology, physiological engineering, and hospital management technology. Herein, Biomedical science covers topics on disease pathways, models and treatment mechanisms, and the roles of red palm oil and phytomedicinal plants in reducing HIV and diabetes complications by enhancing antioxidant activity. Biomedical engineering coves topics of biomaterials (biodegradable polymers and magnetic nanomaterials), coronary stents, contact lenses, modelling of flows through tubes of varying cross-section, heart rate variability analysis of diabetic neuropathy, and EEG analysis in brain function assessment. Biotechnology covers the topics of hydrophobic interaction chromatography, protein scaffolds engineering, liposomes for construction of vaccines, induced pluripotent stem cells to fix genetic diseases by regenerative approaches, polymeric drug conjugates for improving the efficacy of anticancer drugs, and genetic modification of animals for agricultural use. Physiological engineering deals with mathematical modelling of physiological (cardiac, lung ventilation, glucose regulation) systems and formulation of indices for medical assessment (such as cardiac contractility, lung disease status, and diabetes risk). Finally, Hospital management science and technology involves the application of both biomedical engineering and industrial engineering for cost-effective operation of a hospital.




Biomedical Science and Technology


Book Description

Advancing with Biomedical Engineering Today, in most developed countries, modem hospitals have become centers of sophis ticated health care delivery using advanced technological methods. These have come from the emergence of a new interdisciplinary field and profession, commonly referred to as "Bio medical Engineering." Although what is included in the field of biomedical engineering is quite clear, there are some disagreements about its definition. In its most comprehensive meaning, biomedical engineering is the application of the principles and methods of engi neering and basic sciences to the understanding of the structure-function relationships in normal and pathological mammalian tissues, as well as the design and manufacture of prod ucts to maintain, restore, or improve tissue functions, thus assisting in the diagnosis and treat ment of patients. In this very broad definition, the field of biomedical engineering now includes: • System analysis (modeling, simulation, and control of the biological system) • Biomedical instrumentation (detection, measurement, and monitoring of physio logic signals) • Medical imaging (display of anatomic details or physiologic functions for diag nosis) • Biomaterials (development of materials used in prostheses or in medical devices) • Artificial organs (design and manufacture of devices for replacement or augmen tation of tissues or organs) • Rehabilitation (development oftherapeutic and rehabilitation procedures and de vices) • Diagnostics (development of expert systems for diagnosis of diseases) • Controlled drug delivery (development of systems for administration of drugs and other active agents in a controlled manner, preferably to the target area)




Handbook of Data Science Approaches for Biomedical Engineering


Book Description

Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more




Biomedical Engineering: Frontier Research and Converging Technologies


Book Description

This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions from a new and holistic angle. The book reports on the scientific revolutions in the field of biomedicine by describing the latest technologies and findings developed at the interface between science and engineering. It addresses students, fellows, and faculty and industry investigators searching for new challenges in the broad biomedical engineering fields.