Practical Biomedical Signal Analysis Using MATLAB®


Book Description

Practical Biomedical Signal Analysis Using MATLAB® presents a coherent treatment of various signal processing methods and applications. The book not only covers the current techniques of biomedical signal processing, but it also offers guidance on which methods are appropriate for a given task and different types of data. The first several chapters of the text describe signal analysis techniques—including the newest and most advanced methods—in an easy and accessible way. MATLAB routines are listed when available and freely available software is discussed where appropriate. The final chapter explores the application of the methods to a broad range of biomedical signals, highlighting problems encountered in practice. A unified overview of the field, this book explains how to properly use signal processing techniques for biomedical applications and avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods.




Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques


Book Description

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. - Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction - Explains how to apply machine learning techniques to EEG, ECG and EMG signals - Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series




Biosignal and Medical Image Processing


Book Description

Written specifically for biomedical engineers, Biosignal and Medical Image Processing, Third Edition provides a complete set of signal and image processing tools, including diagnostic decision-making tools, and classification methods. Thoroughly revised and updated, it supplies important new material on nonlinear methods for describing and classify




Biomedical Signal and Image Processing


Book Description

Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based.




Signal Processing for Neuroscientists


Book Description

Signal Processing for Neuroscientists introduces analysis techniques primarily aimed at neuroscientists and biomedical engineering students with a reasonable but modest background in mathematics, physics, and computer programming. The focus of this text is on what can be considered the 'golden trio' in the signal processing field: averaging, Fourier analysis, and filtering. Techniques such as convolution, correlation, coherence, and wavelet analysis are considered in the context of time and frequency domain analysis. The whole spectrum of signal analysis is covered, ranging from data acquisition to data processing; and from the mathematical background of the analysis to the practical application of processing algorithms. Overall, the approach to the mathematics is informal with a focus on basic understanding of the methods and their interrelationships rather than detailed proofs or derivations. One of the principle goals is to provide the reader with the background required to understand the principles of commercially available analyses software, and to allow him/her to construct his/her own analysis tools in an environment such as MATLAB®. - Multiple color illustrations are integrated in the text - Includes an introduction to biomedical signals, noise characteristics, and recording techniques - Basics and background for more advanced topics can be found in extensive notes and appendices - A Companion Website hosts the MATLAB scripts and several data files: http://www.elsevierdirect.com/companion.jsp?ISBN=9780123708670




Digital Signal Processing Using MATLAB for Students and Researchers


Book Description

Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.




Biomedical Signal Processing And Signal Modeling


Book Description

This book provides a unique framework for understanding signal processing of biomedical signals and what it tells us about signal sources and their behavior in response to perturbation. Using a modeling-based approach, the author shows how to perform signal processing by developing and manipulating a model of the signal source, providing a logical, coherent basis for recognizing signal types and for tackling the special challenges posed by biomedical signals-including the effects of noise on the signal, changes in basic properties, or the fact that these signals contain large stochastic components and may even be fractal or chaotic. Each chapter begins with a detailed biomedical example, illustrating the methods under discussion and highlighting the interconnection between the theoretical concepts and applications. · The Nature of Biomedical Signals· Memory and Correlation· The Impulse Response· Frequency Response· Modeling Continuous-Time Signals as Sums of Sine Waves· Responses of Linear Continuous-Time Filters to Arbitrary Inputs· Modeling Signals as Sums of Discrete-Time Sine Waves· Noise Removal and Signal Compensation· Modeling Stochastic Signals as Filtered White Noise· Scaling and Long-Term Memory· Nonlinear Models of Signals· Assessing Stationarity and Reproducibility




Biomedical Image Analysis Recipes in MATLAB


Book Description

As its title suggests, this innovative book has been written for life scientists needing to analyse their data sets, and programmers, wanting a better understanding of the types of experimental images life scientists investigate on a regular basis. Each chapter presents one self-contained biomedical experiment to be analysed. Part I of the book presents its two basic ingredients: essential concepts of image analysis and Matlab. In Part II, algorithms and techniques are shown as series of "recipes" or solved examples that show how specific techniques are applied to a biomedical experiments like Western Blots, Histology, Scratch Wound Assays and Fluoresence. Each recipe begins with simple techniques that gradually advance in complexity. Part III presents some advanced techniques for the generation of publication quality figures. The book does not assume any computational or mathematical expertise. A practical, clearly-written introduction to biomedical image analysis that provides the tools for life scientists and engineers to use when solving problems in their own laboratories. Presents the basic concepts of MATLAB software and uses it throughout to show how it can execute flexible and powerful image analysis programs tailored to the specific needs of the problem. Within the context of four biomedical cases, it shows algorithms and techniques as series of "recipes", or solved examples that show how a particular technique is applied in a specific experiment. Companion website containing example datasets, MATLAB files and figures from the book.




Circuits, Signals, and Systems for Bioengineers


Book Description

Circuits, Signals and Systems for Bioengineers: A MATLAB-Based Introduction, Third Edition, guides the reader through the electrical engineering principles that can be applied to biological systems. It details the basic engineering concepts that underlie biomedical systems, medical devices, biocontrol and biomedical signal analysis, providing a solid foundation for students in important bioengineering concepts. Fully revised and updated to better meet the needs of instructors and students, the third edition introduces and develops concepts through computational methods that allow students to explore operations, such as correlations, convolution, the Fourier transform and the transfer function. New chapters have been added on image analysis, noise, stochastic processes and ergodicity, and new medical examples and applications are included throughout the text. - Covers current applications in biocontrol, with examples from physiological systems modeling, such as the respiratory system - Includes revised material throughout, with improved clarity of presentation and more biological, physiological and medical examples and applications - Includes a new chapter on noise, stochastic processes, non-stationary and ergodicity - Includes a separate new chapter featuring expanded coverage of image analysis - Includes support materials, such as solutions, lecture slides, MATLAB data and functions needed to solve the problems




Practical Biomedical Signal Analysis Using MATLAB®


Book Description

Covering the latest cutting-edge techniques in biomedical signal processing while presenting a coherent treatment of various signal processing methods and applications, this second edition of Practical Biomedical Signal Analysis Using MATLAB® also offers practical guidance on which procedures are appropriate for a given task and different types of data. It begins by describing signal analysis techniques—including the newest and most advanced methods in the field—in an easy and accessible way, illustrating them with Live Script demos. MATLAB® routines are listed when available, and freely available software is discussed where appropriate. The book concludes by exploring the applications of the methods to a broad range of biomedical signals while highlighting common problems encountered in practice. These chapters have been updated throughout and include new sections on multiple channel analysis and connectivity measures, phase-amplitude analysis, functional near-infrared spectroscopy, fMRI (BOLD) signals, wearable devices, multimodal signal analysis, and brain-computer interfaces. By providing a unified overview of the field, this book explains how to integrate signal processing techniques in biomedical applications properly and explores how to avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods. It will be an excellent guide for graduate students studying biomedical engineering and practicing researchers in the field of biomedical signal analysis. Features: Fully updated throughout with new achievements, technologies, and methods and is supported with over 40 original MATLAB Live Scripts illustrating the discussed techniques, suitable for self-learning or as a supplement to college courses Provides a practical comparison of the advantages and disadvantages of different approaches in the context of various applications Applies the methods to a variety of signals, including electric, magnetic, acoustic, and optical Katarzyna J. Blinowska is a Professor emeritus at the University of Warsaw, Poland, where she was director of Graduate Studies in Biomedical Physics and head of the Department of Biomedical Physics. Currently, she is employed at the Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. She has been at the forefront in developing new advanced time-series methods for research and clinical applications. Jarosław Żygierewicz is a Professor at the University of Warsaw, Poland. His research focuses on developing methods for analyzing EEG and MEG signals, brain-computer interfaces, and applications of machine learning in signal processing and classification.