Biomimetics -- Materials, Structures and Processes


Book Description

The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.




Biomimetic Principles and Design of Advanced Engineering Materials


Book Description

This book explores the structure-property-process relationship of biomaterials from engineering and biomedical perspectives, and the potential of bio-inspired materials and their applications. A large variety of natural materials with outstanding physical and mechanical properties have appeared in the course of evolution. From a bio-inspired viewpoint, materials design requires a novel and highly cross disciplinary approach. Considerable benefits can be gained by providing an integrated approach using bio-inspiration with materials science and engineering. The book is divided into three parts; Part One focuses on mechanical aspects, dealing with conventional material properties: strength, toughness, hardness, wear resistance, impact resistance, self-healing, adhesion, and adaptation and morphing. Part Two focuses on functional materials with unique capabilities, such as self-cleaning, stimuli-response, structural color, anti-reflective materials, catalytic materials for clean energy conversion and storage, and other related topics. Part Three describes how to mimic natural materials processes to synthesize materials with low cost, efficient and environmentally friendly approaches. For each chapter, the approach is to describe situations in nature first and then biomimetic materials, fulfilling the need for an interdisciplinary approach which overlaps both engineering and materials science.




Biomimetics


Book Description

Market: Students and researchers in geophysics, astronomy, and astrophysics. This book reports on the timely Earth Observing System (EOS) Program's wide range of scientific investigations, observational capabilities, vast data and information system, and educational activities. Because its primary goal is to determine the extent, causes, and regional consequences of global climate change, this program provides the scientific knowledge needed by world leaders to formulate sound and equitable environmental policies.




Biomimetics


Book Description

Nature is the world's foremost designer. With billions of years of experience and boasting the most extensive laboratory available, it conducts research in every branch of engineering and science. Nature's designs and capabilities have always inspired technology, from the use of tongs and tweezers to genetic algorithms and autonomous legged robots.




Bioinspired Structures and Design


Book Description

Master simple to advanced biomaterials and structures with this essential text. Featuring topics ranging from bionanoengineered materials to bio-inspired structures for spacecraft and bio-inspired robots, and covering issues such as motility, sensing, control and morphology, this highly illustrated text walks the reader through key scientific and practical engineering principles, discussing properties, applications and design. Presenting case studies for the design of materials and structures at the nano, micro, meso and macro-scales, and written by some of the leading experts on the subject, this is the ideal introduction to this emerging field for students in engineering and science as well as researchers.




Advances in Manufacturing and Processing of Materials and Structures


Book Description

Advances in Manufacturing and Processing of Materials and Structures cover the latest advances in materials and structures in manufacturing and processing including additive and subtractive processes. It's intended to provide a compiled resource that reviews details of the advances that have been made in recent years in manufacturing and processing of materials and structures. A key development incorporated within this book is 3D printing, which is being used to produce complex parts including composites with odd shape fibers, as well as tissue and body organs. This book has been tailored for engineers, scientists and practitioners in different fields such as aerospace, mechanical engineering, materials science and biomedicine. Biomimetic principles have also been integrated. Features Provides the latest state-of-the art on different manufacturing processes, including a biomimetics viewpoint Offers broad coverage of advances in materials and manufacturing Written by chapter authors who are world-class researchers in their respective fields Provides in-depth presentation of the latest 3D and 4D technologies related to various manufacturing disciplines Provides substantial references in each chapter to enhance further study




Biomimetic Research for Architecture and Building Construction


Book Description

This book comprises a first survey of the Collaborative Research Center SFB-TRR 141 ‘Biological Design and Integrative Structures – Analysis, Simulation and Implementation in Architecture’, funded by the Deutsche Forschungsgemeinschaft since October 2014. The SFB-TRR 141 provides a collaborative framework for architects and engineers from the University of Stuttgart, biologists and physicists from the University of Freiburg and geoscientists and evolutionary biologists from the University of Tübingen. The programm is conceptualized as a dialogue between the disciplines and is based on the belief that that biomimetic research has the potential to lead everyone involved to new findings far beyond his individual reach. During the last few decades, computational methods have been introduced into all fields of science and technology. In architecture, they enable the geometric differentiation of building components and allow the fabrication of porous or fibre-based materials with locally adjusted physical and chemical properties. Recent developments in simulation technologies focus on multi-scale models and the interplay of mechanical phenomena at various hierarchical levels. In the natural sciences, a multitude of quantitative methods covering diverse hierarchical levels have been introduced. These advances in computational methods have opened a new era in biomimetics: local differentiation at various scales, the main feature of natural constructions, can for the first time not only be analysed, but to a certain extent also be transferred to building construction. Computational methodologies enable the direct exchange of information between fields of science that, until now, have been widely separated. As a result they lead to a new approach to biomimetic research, which, hopefully, contributes to a more sustainable development in architecture and building construction.




Engineered Biomimicry


Book Description

Engineered Biomimicry covers a broad range of research topics in the emerging discipline of biomimicry. Biologically inspired science and technology, using the principles of math and physics, has led to the development of products as ubiquitous as VelcroTM (modeled after the spiny hooks on plant seeds and fruits). Readers will learn to take ideas and concepts like this from nature, implement them in research, and understand and explain diverse phenomena and their related functions. From bioinspired computing and medical products to biomimetic applications like artificial muscles, MEMS, textiles and vision sensors, Engineered Biomimicry explores a wide range of technologies informed by living natural systems. Engineered Biomimicry helps physicists, engineers and material scientists seek solutions in nature to the most pressing technical problems of our times, while providing a solid understanding of the important role of biophysics. Some physical applications include adhesion superhydrophobicity and self-cleaning, structural coloration, photonic devices, biomaterials and composite materials, sensor systems, robotics and locomotion, and ultra-lightweight structures. - Explores biomimicry, a fast-growing, cross-disciplinary field in which researchers study biological activities in nature to make critical advancements in science and engineering - Introduces bioinspiration, biomimetics, and bioreplication, and provides biological background and practical applications for each - Cutting-edge topics include bio-inspired robotics, microflyers, surface modification and more




Biomimetic Design Method for Innovation and Sustainability


Book Description

Presenting a novel biomimetic design method for transferring design solutions from nature to technology, this book focuses on structure-function patterns in nature and advanced modeling tools derived from TRIZ, the theory of inventive problem-solving. The book includes an extensive literature review on biomimicry as an engine of both innovation and sustainability, and discusses in detail the biomimetic design process, current biomimetic design methods and tools. The structural biomimetic design method for innovation and sustainability put forward in this text encompasses (1) the research method and rationale used to develop and validate this new design method; (2) the suggested design algorithm and tools including the Find structure database, structure-function patterns and ideality patterns; and (3) analyses of four case studies describing how to use the proposed method. This book offers an essential resource for designers who wish to use nature as a source of inspiration and knowledge, innovators and sustainability experts, and scientists and researchers, amongst others.




Industrial Biomimetics


Book Description

Biomimetics is an innovative paradigm shift based on biodiversity for sustainability. Biodiversity is not only the result of evolutionary adaption but also the optimized solution of an epic combinatorial chemistry for sustainability, because the diversity has been acquired by biological processes and technology, including production processes, operating principles, and control systems, all of which differ from human technology. In the recent decades, biomimetics has gained a great deal of industrial interest because of its unique solutions for engineering problems. In this book, researchers have contributed cutting-edge results from the viewpoint of two types of industrial applications of biomimetics. The first type starts with engineering tasks to solve an engineering problem using biomimetics, while the other starts with the knowledge of biology and its application to engineering fields. This book discusses both approaches. Edited by Profs. Masatsugu Shimomura and Akihiro Miyauchi, two prominent nanotechnology researchers, this book will appeal to advanced undergraduate- and graduate-level students of biology, chemistry, physics, and engineering and to researchers working in the areas of mechanics, optical devices, glue materials, sensor devices, and SEM observation of living matter.