Biophysically based Computational Models of Astrocyte ~ Neuron Coupling and their Functional Significance


Book Description

Neuroscientists are increasingly becoming more interested in modelling brain functions where capturing the biophysical mechanisms underpinning these functions requires plausible models at the level of neuron cells. However, cell level models are still very much in the embryo stage and therefore there is a need to advance the level of biological realism at the level of neurons/synapses. Recent publications have highlighted that astrocytes continually exchange information with multiple synapses; if we are to fully appreciate this dynamic and coordinated interplay between these cells then more research on bidirectional signalling between astrocytes and neurons is required. A better understanding of astrocyte-neuron cell coupling would provide the building block for studying the regulatory capability of astrocytes networks on a large scale. For example, it is believed that local and global signalling via astrocytes underpins brain functions like synchrony, learning, memory and self repair. This Research Topic aims to report on current research work which focuses on understanding and modelling the interaction between astrocytes and neurons at the cellular level (Bottom up) and at network level (Top down). Understanding astrocytic regulation of neural activity is crucial if we are to capture how information is represented and processed across large neuronal ensembles in humans.







Metastable Dynamics of Neural Ensembles


Book Description

A classical view of neural computation is that it can be characterized in terms of convergence to attractor states or sequential transitions among states in a noisy background. After over three decades, is this still a valid model of how brain dynamics implements cognition? This book provides a comprehensive collection of recent theoretical and experimental contributions addressing the question of stable versus transient neural population dynamics from complementary angles. These studies showcase recent efforts for designing a framework that encompasses the multiple facets of metastability in neural responses, one of the most exciting topics currently in systems and computational neuroscience.




Criticality in Neural Systems


Book Description

Neurowissenschaftler suchen nach Antworten auf die Fragen, wie wir lernen und Information speichern, welche Prozesse im Gehirn verantwortlich sind und in welchem Zeitrahmen diese ablaufen. Die Konzepte, die aus der Physik kommen und weiterentwickelt werden, können in Medizin und Soziologie, aber auch in Robotik und Bildanalyse Anwendung finden. Zentrales Thema dieses Buches sind die sogenannten kritischen Phänomene im Gehirn. Diese werden mithilfe mathematischer und physikalischer Modelle beschrieben, mit denen man auch Erdbeben, Waldbrände oder die Ausbreitung von Epidemien modellieren kann. Neuere Erkenntnisse haben ergeben, dass diese selbstgeordneten Instabilitäten auch im Nervensystem auftreten. Dieses Referenzwerk stellt theoretische und experimentelle Befunde internationaler Gehirnforschung vor zeichnet die Perspektiven dieses neuen Forschungsfeldes auf.




Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics


Book Description

Neuronal Networks in Brain Function, CNS Disorders, and Therapeutics, edited by two leaders in the field, offers a current and complete review of what we know about neural networks. How the brain accomplishes many of its more complex tasks can only be understood via study of neuronal network control and network interactions. Large networks can undergo major functional changes, resulting in substantially different brain function and affecting everything from learning to the potential for epilepsy. With chapters authored by experts in each topic, this book advances the understanding of: - How the brain carries out important tasks via networks - How these networks interact in normal brain function - Major mechanisms that control network function - The interaction of the normal networks to produce more complex behaviors - How brain disorders can result from abnormal interactions - How therapy of disorders can be advanced through this network approach This book will benefit neuroscience researchers and graduate students with an interest in networks, as well as clinicians in neuroscience, pharmacology, and psychiatry dealing with neurobiological disorders. - Utilizes perspectives and tools from various neuroscience subdisciplines (cellular, systems, physiologic), making the volume broadly relevant - Chapters explore normal network function and control mechanisms, with an eye to improving therapies for brain disorders - Reflects predominant disciplinary shift from an anatomical to a functional perspective of the brain - Edited work with chapters authored by leaders in the field around the globe – the broadest, most expert coverage available




Artificial Neural Networks and Machine Learning – ICANN 2018


Book Description

This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybersecurity, DL and Social Networks, Evolving Systems – Optimization, Extreme Learning Machines, From Neurons to Neuromorphism, From Sensation to Perception, From Single Neurons to Networks, Fuzzy Modeling, Hierarchical ANN, Inference and Recognition, Information and Optimization, Interacting with The Brain, Machine Learning (ML), ML for Bio Medical systems, ML and Video-Image Processing, ML and Forensics, ML and Cybersecurity, ML and Social Media, ML in Engineering, Movement and Motion Detection, Multilayer Perceptrons and Kernel Networks, Natural Language, Object and Face Recognition, Recurrent Neural Networks and Reservoir Computing, Reinforcement Learning, Reservoir Computing, Self-Organizing Maps, Spiking Dynamics/Spiking ANN, Support Vector Machines, Swarm Intelligence and Decision-Making, Text Mining, Theoretical Neural Computation, Time Series and Forecasting, Training and Learning.




Astrocytes in (Patho)Physiology of the Nervous System


Book Description

Astrocytes were the original neuroglia that Ramón y Cajal visualized in 1913 using a gold sublimate stain. This stain targeted intermediate filaments that we now know consist mainly of glial fibrillary acidic protein, a protein used today as an astrocytic marker. Cajal described the morphological diversity of these cells with some ast- cytes surrounding neurons, while the others are intimately associated with vasculature. We start the book by discussing the heterogeneity of astrocytes using contemporary tools and by calling into question the assumption by classical neuroscience that neurons and glia are derived from distinct pools of progenitor cells. Astrocytes have long been neglected as active participants in intercellular communication and information processing in the central nervous system, in part due to their lack of electrical excitability. The follow up chapters review the “nuts and bolts” of ast- cytic physiology; astrocytes possess a diverse assortment of ion channels, neu- transmitter receptors, and transport mechanisms that enable the astrocytes to respond to many of the same signals that act on neurons. Since astrocytes can detect chemical transmitters that are released from neurons and can release their own extracellular signals there is an increasing awareness that they play physiological roles in regulating neuronal activity and synaptic transmission. In addition to these physiological roles, it is becoming increasingly recognized that astrocytes play critical roles during pathophysiological states of the nervous system; these states include gliomas, Alexander disease, and epilepsy to mention a few.




Dynamic Coordination in the Brain


Book Description

An examination of how widely distributed and specialized activities of the brain are flexibly and effectively coordinated. A fundamental shift is occurring in neuroscience and related disciplines. In the past, researchers focused on functional specialization of the brain, discovering complex processing strategies based on convergence and divergence in slowly adapting anatomical architectures. Yet for the brain to cope with ever-changing and unpredictable circumstances, it needs strategies with richer interactive short-term dynamics. Recent research has revealed ways in which the brain effectively coordinates widely distributed and specialized activities to meet the needs of the moment. This book explores these findings, examining the functions, mechanisms, and manifestations of distributed dynamical coordination in the brain and mind across different species and levels of organization. The book identifies three basic functions of dynamic coordination: contextual disambiguation, dynamic grouping, and dynamic routing. It considers the role of dynamic coordination in temporally structured activity and explores these issues at different levels, from synaptic and local circuit mechanisms to macroscopic system dynamics, emphasizing their importance for cognition, behavior, and psychopathology. Contributors Evan Balaban, György Buzsáki, Nicola S. Clayton, Maurizio Corbetta, Robert Desimone, Kamran Diba, Shimon Edelman, Andreas K. Engel, Yves Fregnac, Pascal Fries, Karl Friston, Ann Graybiel, Sten Grillner, Uri Grodzinski, John-Dylan Haynes, Laurent Itti, Erich D. Jarvis, Jon H. Kaas, J.A. Scott Kelso, Peter König, Nancy J. Kopell, Ilona Kovács, Andreas Kreiter, Anders Lansner, Gilles Laurent, Jörg Lücke, Mikael Lundqvist, Angus MacDonald, Kevan Martin, Mayank Mehta, Lucia Melloni, Earl K. Miller, Bita Moghaddam, Hannah Monyer, Edvard I. Moser, May-Britt Moser, Danko Nikolic, William A. Phillips, Gordon Pipa, Constantin Rothkopf, Terrence J. Sejnowski, Steven M. Silverstein, Wolf Singer, Catherine Tallon-Baudry, Roger D. Traub, Jochen Triesch, Peter Uhlhaas, Christoph von der Malsburg, Thomas Weisswange, Miles Whittington, Matthew Wilson







The Tripartite Synapse


Book Description

Accompanying CD-ROM contains ... "additional images, movies, and animated sequences." -- p. [4] of cover.