Biopolymers


Book Description

This handbook focuses on biopolymers for both environmental and biomedical applications. It shows recent advances in technology in all areas from chemical synthesis or biosynthesis to end use applications. These areas have not been covered in a single book before and they include biopolymers for chemical and biotechnological modifications, material structures, characterization, processing, properties, and applications. After the introduction which summarizes the importance of biopolymer in the market, the book covers almost all the topics related to polysaccharides, biofibers, bioplastics, biocomposites, natural rubber, gums, bacterial and blood compatible polymers, and applications of biopolymers in various fields.




Modern Biopolymer Science


Book Description

Industrialists developing new food and pharmaceutical products face the challenge of innovation in an increasingly competitive market that must consider incredient cost, product added-value, expectations of a healthy life-style, improved sensory impact, controlled delivery of active compounds and last, but not lease, product stability. While much work has been done to explore, understand, and address these issues, a gap has emerged between recent advances in fundamental knowledge and its direct application to product situations with a growing need for scientific input.Modern Biopolymer Science matches science to application by first acknowledging the differing viewpoints between those working with low-solids and those working with high-solids, and then sharing the expertise of those two camps under a unified framework of materials science. - Real-world utilisation of fundamental science to achieve breakthroughs in product development - Includes a wide range of related aspects of low and high-solids systems for foods and pharmaceuticals - Covers more than bio-olymer science in foods by including biopolymer interactions with bioactive compounds, issues of importance in drug delivery and medicinal chemistry




Handbook of Biopolymers and Biodegradable Plastics


Book Description

Biopolymers and Biodegradable Plastics are a hot issue across the Plastics industry, and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction indusry to the automotive sector. This book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers. Topics covered include preparation, fabrication, applications and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed. Dr Ebnesajjad provides readers with an in-depth reference for the plastics industry – material suppliers and processors, bio-polymer producers, bio-polymer processors and fabricators – and for industry sectors utilizing biopolymers – automotive, packaging, construction, wind turbine manufacturers, film manufacturers, adhesive and coating industries, medical device manufacturers, biomedical engineers, and the recycling industry. Essential information and practical guidance for engineers and scientists working with bioplastics, or evaluating a migration to bioplastics. Includes key published material on biopolymers, updated specifically for this Handbook, and new material including coverage of PLA and Tissue Engineering Scaffolds. Coverage of materials and applications together in one handbook enables engineers and scientists to make informed design decisions.




Biopolymers


Book Description

This book describes the structure, performance and applications of biopolymers. It contains thirteen chapters: Chapter One describes the general introduction of biopolymers, while Chapter Two deals with environmental perspectives that biopolymers are involved in. Chapter Three deals with the surface nanostructuring of biopolymers for tissue engineering. Chapter Four describes the nanomaterials as an emerging opportunity for purifying drinking water. Chapter Five is based on the microalgal engineering of biopolymers, while Chapter Six contains information on the lignocellulosic biomass used to obtain polyhydroxybutyrate as a biopolymer under. Chapter Seven mainly discusses chitosan as a biomedical material (properties and applications), and Chapter Eight introduces details about gum ghatti (Anogeissus latifolia), a proteinaceous edible biopolymer and its multifaceted biological applications. Chapter Nine describes the recent advances in biopolymers for innovative food packaging, while Chapter Ten discusses the potential production of polyhydroxybutyrate from renewable feedstocks. Chapter Eleven contains information about biopolymer stabilization of fly ash and coal mine overburden for erosion resistance, whereas Chapter Twelve describes in detail the structure, features and applications of biopolymers. Finally, Chapter Thirteen summarizes the recent trends concerning biopolymers. The current book will be highly beneficial to researchers working in the area of biopolymers, polymer chemistry, materials science, engineering, drug delivery, medicine, waste management, environmental science and waste water research. This book also covers information concerning natural biopolymers, biotechnology, biocomposites and bioplastics for a variety of environmental applications. The potential researchers working in the area will benefit from the fundamental concepts, advanced approaches and applications. The book also provides a platform for all researchers to carry out biopolymer research mainly towards its structure, performance and application, and also covers fundamental background information in the area. The book also covers recent advancements in the area as well as prospects about the future research and development of biopolymers.




Biopolymer Membranes and Films


Book Description

Biopolymer Membranes and Films: Health, Food, Environment, and Energy Applications presents the latest techniques for the design and preparation of biopolymer-based membranes and films, leading to a range of cutting-edge applications. The first part of the book introduces the fundamentals of biopolymers, two-dimensional systems, and the characterization of biopolymer membranes and films, considering physicochemical, mechanical and barrier properties. Subsequent sections are organized by application area, with each chapter explaining how biopolymer-based membranes or films can be developed for specific innovative uses across the health, food, environmental and energy sectors. This book is a valuable resource for researchers, scientists and advanced students involved in biopolymer science, polymer membranes and films, polymer chemistry and materials science, as well as for those in industry and academia who are looking to develop materials for advanced applications in the health, food science, environment or energy industries. - Presents detailed coverage of a range of novel applications in key strategic areas across health, food, environment and energy - Considers the difficulties associated with two-dimensional materials - Assists the reader in selecting the best materials and properties for specific applications - Helps researchers, scientists and engineers combine the enhanced properties of membranes and films with the sustainable characteristics of biopolymer-based materials




Biopolymers


Book Description

As an area of high topical interest, Biopolymers – New materials for Sustainable Films and Coatings covers the development and utilization of polymers derived from bioresources, with a particular focus on film and coating applications. With growing concern for the environment and the rising price of crude oil, there is increasing demand for non-petroleum-based polymers from renewable resources. Leading research groups worldwide in industry and academe are working on such technology with the objective of applying the latest advances in the field. Written by well-respected experts, this text systematically covers the extraction and production of selected biopolymers as well as their properties and application as films or coatings in a variety of uses. The areas addressed include food packaging, edible coatings, paper coatings and agricultural films. Intended for researchers and students, this book will also be of interest to industry, especially in terms of the practical applications.




Biopolymers: Reuse, Recycling, and Disposal


Book Description

Biopolymers Reuse, Recycling and Disposal is the first book covering all aspects of biopolymer waste management and post-usage scenarios, embracing existing technologies, applications, and the behavior of biopolymers in various waste streams. The book investigates the benefits and weaknesses, social, economic and environmental impacts, and regulatory aspects of each technology. It covers different types of recycling and degradation, as well as life cycle analysis, all supported by case studies, literature references, and detailed information about global patents. Patents in particular—comprising 80% of published technical literature in this emerging field, widely scattered, and often available in Japanese only—are a key source of information. Dr. Niaounakis draws on disciplines such as polymer science, management, biology and microbiology, organic chemistry, environmental chemistry, and patent law to produce a reference guide for engineers, scientists and other professionals involved in the development and production of biopolymers, waste management, and recycling. This information is also valuable for regulators, patent attorneys and academics working in this field. - Explores techniques and technologies involved in managing biopolymers in the waste stream, including recycling and upcycling - Provides waste management and recycling professionals the knowledge they need to plan for the exponential growth in biopolymer waste - Helps engineers and product designers fully consider the end-of-life aspects of their environmentally sustainable 'green' products and solutions




Introduction to Biopolymer Physics


Book Description

Physics.




Biopolymers and Their Industrial Applications


Book Description

Biopolymers and Their Industrial Applications: From Plant, Animal, and Marine Sources to Functional Products is a detailed guide to the use of biopolymers for advanced applications across a range of key industries. In terms of processing and cost, bio-based polymers are becoming increasingly viable for an ever-broadening range of novel industrial applications. The book begins with an overview of biopolymers, explaining resources, demands, sustainability, life cycle assessment (LCA) modeling and simulation, and classifications. Further in-depth chapters explore the latest techniques and methodologies for isolation and physicochemical characterization, materials selection, and processing for blends and composites. Chapters 6 to 14 each focus on the preparation and applications of biopolymers in a specific industrial area, including food science and nutraceuticals, medicine and pharmaceuticals, textiles, cosmeceutical, packaging, adhesives and automotive, 3D printing, super capacitor and energy storage devices, and environmental applications. The final chapter compares and analyzes biopolymers alongside synthetic polymers, also offering valuable insight into social, economic, and environmental aspects. This is an essential resource for those seeking to understand, research, or utilize biopolymers in industrial applications. This includes researchers, scientists, and advanced students working in biopolymers, polymer science, polymer chemistry, biomaterials, materials science, nanotechnology, composites, and biotechnology. This is a highly valuable book for scientists, R&D professionals, designers, and engineers across multiple industries and disciplines, who are looking to utilize biopolymers for components and products. - Introduces a broad range of industrial application areas, including food, medicine, textiles, cosmetics, packaging, automotive, 3D printing, energy, and more - Offers an industry-oriented approach, addressing challenges and explaining the preparation and application of biopolymers for functional products and parts - Considers important factors such as resources, classification, sustainability, and life cycle assessment (LCA) modeling and simulation - Compares and analyzes biopolymers alongside synthetic polymers, also offering valuable insight into social, economic, and environmental aspects




Biopolymers from Renewable Resources


Book Description

Biopolymers from Renewable Resources is a compilation of information on the diverse and useful polymers derived from agricultural, animal, and microbial sources. The volume provides insight into the diversity of polymers obtained directly from, or derived from, renewable resources. The beneficial aspects of utilizing polymers from renewable resources, when considering synthesis, pro cessing, disposal, biodegradability, and overall material life-cycle issues, suggests that this will continue to be an important and growing area of interest. The individual chapters provide information on synthesis, processing and properties for a variety of polyamides, polysaccharides, polyesters and polyphenols. The reader will have a single volume that provides a resource from which to gain initial insights into this diverse field and from which key references and contacts can be drawn. Aspects of biology, biotechnology, polymer synthesis, polymer processing and engineering, mechanical properties and biophysics are addressed to varying degrees for the specific biopolymers. The volume can be used as a reference book or as a teaching text. At the more practical level, the range of important materials derived from renewable resources is both extensive and impressive. Gels, additives, fibers, coatings and films are generated from a variety of the biopolymers reviewed in this volume. These polymers are used in commodity materials in our everyday lives, as well as in specialty products.