Biosafety in Industrial Biotechnology


Book Description

As an industry, biotechnology may be likened to the Hymn Book, being both ancient and modern. Whereas activities such as baking, brewing, the fermenting of foods date from our earliest attempts to control and utilise the environment, the application of recombinant DNA technology is recognised as being at the forefront of novel industrial development. Perhaps because of its association with processing foodstuffs together with the benefits derived from applications in the early organic chemistry and pharmaceutical industries, biotechnology has been regarded as being inherently safe. Yet unlike other modern industries, such as chemical and nuclear, where regulation has followed from incidents or accidents, modern biotechnology has been subject to close scrutiny and regulation almost from its inception. The process of regulation itself is somewhat unusual in that it was initially self-imposed by the very scientists who developed the fundamental techniques of recombinant DNA technology. They recognised the signific ance of their development but were concerned of the effects on humans and the environment of uncontrolled application of the new, powerful technology. Concern about the possible consequences of genetic manipula tion has undoubtedly been the driving force behind the regulations that are now in place in many parts of the world and which are the subject of this book. Safety issues in the biotechnology industry can be categorised under three headings: worker, environmental and consumer (product) safety.




Industrialization of Biology


Book Description

The tremendous progress in biology over the last half century - from Watson and Crick's elucidation of the structure of DNA to today's astonishing, rapid progress in the field of synthetic biology - has positioned us for significant innovation in chemical production. New bio-based chemicals, improved public health through improved drugs and diagnostics, and biofuels that reduce our dependency on oil are all results of research and innovation in the biological sciences. In the past decade, we have witnessed major advances made possible by biotechnology in areas such as rapid, low-cost DNA sequencing, metabolic engineering, and high-throughput screening. The manufacturing of chemicals using biological synthesis and engineering could expand even faster. A proactive strategy - implemented through the development of a technical roadmap similar to those that enabled sustained growth in the semiconductor industry and our explorations of space - is needed if we are to realize the widespread benefits of accelerating the industrialization of biology. Industrialization of Biology presents such a roadmap to achieve key technical milestones for chemical manufacturing through biological routes. This report examines the technical, economic, and societal factors that limit the adoption of bioprocessing in the chemical industry today and which, if surmounted, would markedly accelerate the advanced manufacturing of chemicals via industrial biotechnology. Working at the interface of synthetic chemistry, metabolic engineering, molecular biology, and synthetic biology, Industrialization of Biology identifies key technical goals for next-generation chemical manufacturing, then identifies the gaps in knowledge, tools, techniques, and systems required to meet those goals, and targets and timelines for achieving them. This report also considers the skills necessary to accomplish the roadmap goals, and what training opportunities are required to produce the cadre of skilled scientists and engineers needed.




Biosafety in the Laboratory


Book Description

Biosafety in the Laboratory is a concise set of practical guidelines for handling and disposing of biohazardous material. The consensus of top experts in laboratory safety, this volume provides the information needed for immediate improvement of safety practices. It discusses high- and low-risk biological agents (including the highest-risk materials handled in labs today), presents the "seven basic rules of biosafety," addresses special issues such as the shipping of dangerous materials, covers waste disposal in detail, offers a checklist for administering laboratory safetyâ€"and more.




Industrial Clusters in Biotechnology


Book Description

The ultimate aim of Cleverbio has been to build a normative model that incorporates:




Preparing for Future Products of Biotechnology


Book Description

Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.




An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology


Book Description

An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology provides a comprehensive look at the biggest technologies that have revolutionized biology since the early 20th century, also discussing their impact on society. The book focuses on issues related to bioethics, biosafety and intellectual property rights, and is written in an easy-to-understand manner for graduate students and early career researchers interested in the opportunities and challenges associated with advances in biotechnology. Important topics covered include the Human Genome Project, human cloning, rDNA technology, the 3Rs and animal welfare, bioterrorism, human rights and genetic discrimination, good laboratory practices, good manufacturing practices, the protection of biological material and much more. Full of relevant case studies, practical examples, weblinks and resources for further reading, this book offers an essential and holistic look at the ways in which biotechnology has affected our global society. - Provides a comprehensive look at the ethical, legal and social implications of biotechnology - Discusses the global efforts made to resolve issues - Incorporates numerous case studies to more clearly convey concepts and chart the development of guidelines and legislation regulating issues in biotechnology - Takes a straightforward approach to highlight and discuss both the benefits and risks associated with the latest biotechnologies




Biological Safety


Book Description

Biological safety and biosecurity protocols are essential to the reputation and responsibility of every scientific institution, whether research, academic, or production. Every risk—no matter how small—must be considered, assessed, and properly mitigated. If the science isn't safe, it isn't good. Now in its fifth edition, Biological safety: Principles and Practices remains the most comprehensive biosafety reference. Led by editors Karen Byers and Dawn Wooley, a team of expert contributors have outlined the technical nuts and bolts of biosafety and biosecurity within these pages. This book presents the guiding principles of laboratory safety, including: the identification, assessment, and control of the broad variety of risks encountered in the lab; the production facility; and, the classroom. Specifically, Biological Safety covers protection and control elements—from biosafety level cabinets and personal protection systems to strategies and decontamination methods administrative concerns in biorisk management, including regulations, guidelines, and compliance various aspects of risk assessment covering bacterial pathogens, viral agents, mycotic agents, protozoa and helminths, gene transfer vectors, zooonotic agents, allergens, toxins, and molecular agents as well as decontamination, aerobiology, occupational medicine, and training A resource for biosafety professionals, instructors, and those who work with pathogenic agents in any capacity, Biological safety is also a critical reference for laboratory managers, and those responsible for managing biohazards in a range of settings, including basic and agricultural research, clinical laboratories, the vivarium, field study, insectories, and greenhouses.




Biomass Utilization


Book Description

This proceedings volume represents the culmination of nearly three years of planning, organizing and carrying out of a NATO Ad vanced Study Institute on Biomass Utilization. The effort was initi ated by Dr. Harry Sobel, then Editor of Biosources Digest, and a steering committee representing the many disciplines that this field brings together. . When the fiscal and logistical details of the original plan could not be worked out, the idea was temporarily suspended. In the spring of 1982, the Renewable Materials Institute of the State University of New York at the College of Environmental Science and Forestry in Syracuse, New York revived the plan. A number of modifications had to be made, including the venue which was changed from the U.S.A. to Portugal. Additional funding beyond the basic support provided by the Scientific Affairs Division of NATO had to be obtained. Ul timately there were supplementary grants from the Foundation for Microbiology and the Anne S. Richardson Fund to assist student participants. The New York State College of Forestry Foundation, Inc. provided major support through the Renewable Ma terials Institute. The ASI was held in Alcabideche, Portugal from September 26 to October 9, 1982. Eighty participants including fifteen principal lecturers were assembled at the Hotel Sintra Estoril for the program that was organized as a comprehensive course on biomass utilization. The main lectures were supplemented by relevant short papers offered by the participants.




Biotechnology and Biosafety


Book Description

This forum is associated with the Fifth Annual World Bank Conference on Environmentally and Socially Sustainable Development, held at the Bank, October 9-10, 1997. How to maximize the potential of biotechnology while minimizing risk is a critical issue facing scientists and policymakers and was the topic of the conference. The special focus of the debate was on how the promises of biotechnology can be realized for the benefit of the world's poor, the environment, and the safe management of biotechnology products and processes. This publication summarizes the wide-ranging, stimulating, and provocative presentations and discussions that took place during the meeting.




Biodefense in the Age of Synthetic Biology


Book Description

Scientific advances over the past several decades have accelerated the ability to engineer existing organisms and to potentially create novel ones not found in nature. Synthetic biology, which collectively refers to concepts, approaches, and tools that enable the modification or creation of biological organisms, is being pursued overwhelmingly for beneficial purposes ranging from reducing the burden of disease to improving agricultural yields to remediating pollution. Although the contributions synthetic biology can make in these and other areas hold great promise, it is also possible to imagine malicious uses that could threaten U.S. citizens and military personnel. Making informed decisions about how to address such concerns requires a realistic assessment of the capabilities that could be misused. Biodefense in the Age of Synthetic Biology explores and envisions potential misuses of synthetic biology. This report develops a framework to guide an assessment of the security concerns related to advances in synthetic biology, assesses the levels of concern warranted for such advances, and identifies options that could help mitigate those concerns.