Plant Biology and Biotechnology


Book Description

Plant genomics and biotechnology have recently made enormous strides, and hold the potential to benefit agriculture, the environment and various other dimensions of the human endeavor. It is no exaggeration to claim that the twenty-first century belongs to biotechnology. Knowledge generation in this field is growing at a frenetic pace, and keeping abreast of the latest advances and calls on us to double our efforts. Volume II of this two-part series addresses cutting-edge aspects of plant genomics and biotechnology. It includes 37 chapters contributed by over 70 researchers, each of which is an expert in his/her own field of research. Biotechnology has helped to solve many conundrums of plant life that had long remained a mystery to mankind. This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology. This is followed by chapters on bioremediation, biofuels and biofertilizers through microalgal manipulation, making it a commercializable prospect; discerning finer details of biotic stress with plant-fungal interactions; and the dynamics of abiotic and biotic stresses, which also figure elsewhere in the book. Breeding crop plants for desirable traits has long been an endeavor of biotechnologists. The significance of molecular markers, marker assisted selection and techniques are covered in a dedicated chapter, as are comprehensive reviews on plant molecular biology, DNA fingerprinting techniques, genomic structure and functional genomics. A chapter dedicated to organellar genomes provides extensive information on this important aspect. Elsewhere in the book, the newly emerging area of epigenetics is presented as seen through the lens of biotechnology, showcasing the pivotal role of DNA methylation in effecting permanent and transient changes to the genome. Exclusive chapters deal with bioinformatics and systems biology. Handy tools for practical applications such as somatic embryogenesis and micropropagation are included to provide frontline information to entrepreneurs, as is a chapter on somaclonal variation. Overcoming barriers to sexual incompatibility has also long been a focus of biotechnology, and is addressed in chapters on wide hybridization and hybrid embryo rescue. Another area of accomplishing triploids through endosperm culture is included as a non-conventional breeding strategy. Secondary metabolite production through tissue cultures, which is of importance to industrial scientists, is also covered. Worldwide exchange of plant genetic material is currently an essential topic, as is conserving natural resources in situ. Chapters on in vitro conservation of extant, threatened and other valuable germplasms, gene banking and related issues are included, along with an extensive account of the biotechnology of spices – the low-volume, high-value crops. Metabolic engineering is another emerging field that provides commercial opportunities. As is well known, there is widespread concern over genetically modified crops among the public. GM crops are covered, as are genetic engineering strategies for combating biotic and abiotic stresses where no other solutions are in sight. RNAi- and micro RNA- based strategies for crop improvement have proved to offer novel alternatives to the existing non-conventional techniques, and detailed information on these aspects is also included. The book’s last five chapters are devoted to presenting the various aspects of environmental, marine, desert and rural biotechnology. The state-of-the-art coverage on a wide range of plant genomics and biotechnology topics will be of great interest to post-graduate students and researchers, including the employees of seed and biotechnology companies, and to instructors in the fields of plant genetics, breeding and biotechnology.




BIOTECHNOLOGY - Volume II


Book Description

This Encyclopedia of Biotechnology is a component of the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Biotechnology draws on the pure biological sciences (genetics, animal cell culture, molecular biology, microbiology, biochemistry, embryology, cell biology) and in many instances is also dependent on knowledge and methods from outside the sphere of biology (chemical engineering, bioprocess engineering, information technology, biorobotics). This 15-volume set contains several chapters, each of size 5000-30000 words, with perspectives, applications and extensive illustrations. It carries state-of-the-art knowledge in the field and is aimed, by virtue of the several applications, at the following five major target audiences: University and College Students, Educators, Professional Practitioners, Research Personnel and Policy Analysts, Managers, and Decision Makers and NGOs.




Biotechnology in Context


Book Description

Examines biotechnology and related subjects in the context of science, government, politics, culture and society, and the environment. It also covers historical, political and ethical debates and issues.




Essential Topics in Biotechnology: Volume II


Book Description

This book is an effort to bring out a complete picture of biotechnology, which has had an accelerated growth in the last couple of centuries. The book has tried to capture its origins in history, explain the headways it made from mid-19th century till now, and the immense possibilities the subject holds out for tomorrow in science, employment, commerce, and industry. It follows a comprehensible approach through visuals and easy flow of content, which will benefit students and experts alike.




Environmental Biotechnology Vol. 2


Book Description

This book provides the technological insight on biorefinery and nanoremediation and provides comprehensive reviews on applications of Biochar for environmental sustainability. Critical review on biosurfectants in food applications as well as sustainable agricultural practices has also been provided in this book. It also highlights the microbial-omics and microRNAs for protecting ecotoxicity. Overall, this book provides critical as well as comprehensive chapters on wastewater treatment using different technologies.




Yellow Biotechnology II


Book Description

Insect derived enzymes – a treasure for white biotechnology and food biotechnology. Insect-derived chitinases. Cellulases from insects. Optimization of Insect Cell Based Protein Production Processes - Expression Systems, Online Monitoring, Scale-Up. Insect antenna-based biosensors for in situ detection of volatiles. Y-linked markers for improved population control of the tephritid fruit fly pest, Anastrepha suspensa. Transgenic Approaches to Western Corn Rootworm Control. Tribolium castaneum as a model for high-throughput RNAi screening. Aphid-proof plants: Biotechnology-based approaches for aphid control.




Applied Mycology


Book Description

The fungal kingdom consists of a wide variety of organisms with a diverse range of forms and functions. Fungi have been utilized for thousands of years and their importance in agriculture, medicine, food production and the environmental sciences is well known. New advances in genomic and metabolomic technologies have allowed further developments in the use of fungi in industry and medicine, increasing the need for a compilation of new applications, developments and technologies across the mycological field. Applied Mycology brings together a range of contributions, highlighting the diverse nature of current research. Chapters include discussions of fungal associations in the environment, agriculture and forestry, long established and novel applications of fungi in fermentation, the use of fungi in the pharmaceutical industry, the growing recognition of fungal infections, current interests in the use fungal enzymes in biotechnology and the new and emerging field of myconanotechnology. Demonstrating the broad coverage and importance of mycological research, this book will be of interest to researchers and students in all biological sciences.




Biotechnology and the Human Good


Book Description

Some of humankind's greatest tools have been forged in the research laboratory. Who could argue that medical advances like antibiotics, blood transfusions, and pacemakers have not improved the quality of people's lives? But with each new technological breakthrough there comes an array of consequences, at once predicted and unpredictable, beneficial and hazardous. Outcry over recent developments in the reproductive and genetic sciences has revealed deep fissures in society's perception of biotechnical progress. Many are concerned that reckless technological development, driven by consumerist impulses and greedy entrepreneurialism, has the potential to radically shift the human condition—and not for the greater good. Biotechnology and the Human Good builds a case for a stewardship deeply rooted in Judeo-Christian theism to responsibly interpret and assess new technologies in a way that answers this concern. The authors jointly recognize humans not as autonomous beings but as ones accountable to each other, to the world they live in, and to God. They argue that to question and critique how fields like cybernetics, nanotechnology, and genetics might affect our future is not anti-science, anti-industry, or anti-progress, but rather a way to promote human flourishing, common sense, and good stewardship. A synthetic work drawing on the thought of a physician, ethicists, and a theologian, Biotechnology and the Human Good reminds us that although technology is a powerful and often awe-inspiring tool, it is what lies in the heart and soul of who wields this tool that truly makes the difference in our world.




Plant Biotechnology, Volume 2


Book Description

This volume is the second of the new two-volume Plant Biotechnology set. This volume covers many recent advances in the development of transgenic plants that have revolutionized our concepts of sustainable food production, cost-effective alternative energy strategies, microbial biofertilizers and biopesticides, and disease diagnostics through plant biotechnology. With the advancements in plant biotechnology, many of the customary approaches are out of date, and an understanding of new updated approaches is needed. This volume presents information related to recent methods of genetic transformation, gene silencing, development of transgenic crops, biosafety issues, microbial biotechnology, oxidative stress, and plant disease diagnostics and management. Key features: Provides an in-depth knowledge of various techniques of genetic transformation of plants, chloroplast, and fungus Describes advances in gene silencing in plants Discusses transgenic plants for various traits and their application in crop improvement Looks at genetically modified foods and biodiesel production Describes biotechnological approaches in horticultural and ornamental plants Explores the biosafety aspect associated with transgenic crops Considers the role of microbes in sustainable agriculture