Black Body Radiation and the Ultraviolet Catastrophe


Book Description

A fifteen year old boy, gifted in science, perplexed by the opposite sex, with parents who give him everything except affection, goes from a normal, everyday earth-boy existence to encountering a mysterious being, druid priest, monk/historian, the beautiful and matronly Queen Ogaboom, extraterrestrials, a black hole named Fudge, and war-gone Wargons. In the process, he discovers himself, comes to the aid of an embattled extraterrestrial race, and sets right the wrongs he's inflicted on his dimension, thus curing a portion of general, all around, universal angst . . . or does he? Is there more to the story? Will the boy come to the aid of the Queen and her planet Doufear? Will he come to the aid of the universe by stopping the Wargons in their plight to take out thousands of years of built up anger? Will earth survive? Will Doufear? The Milky Way? Beta Bot? where the great Augur resides--alleged spiritual healer of the universe. Lots of questions. Little time. Pick up the book. Before it's too late!




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




Black-Body Theory and the Quantum Discontinuity, 1894-1912


Book Description

"A masterly assessment of the way the idea of quanta of radiation became part of 20th-century physics. . . . The book not only deals with a topic of importance and interest to all scientists, but is also a polished literary work, described (accurately) by one of its original reviewers as a scientific detective story."—John Gribbin, New Scientist "Every scientist should have this book."—Paul Davies, New Scientist




APlusPhysics


Book Description

APlusPhysics: Your Guide to Regents Physics Essentials is a clear and concise roadmap to the entire New York State Regents Physics curriculum, preparing students for success in their high school physics class as well as review for high marks on the Regents Physics Exam. Topics covered include pre-requisite math and trigonometry; kinematics; forces; Newton's Laws of Motion, circular motion and gravity; impulse and momentum; work, energy, and power; electrostatics; electric circuits; magnetism; waves; optics; and modern physics. Featuring more than five hundred questions from past Regents exams with worked out solutions and detailed illustrations, this book is integrated with the APlusPhysics.com website, which includes online question and answer forums, videos, animations, and supplemental problems to help you master Regents Physics essentials. "The best physics books are the ones kids will actually read." Advance Praise for APlusPhysics Regents Physics Essentials: "Very well written... simple, clear engaging and accessible. You hit a grand slam with this review book." -- Anthony, NY Regents Physics Teacher. "Does a great job giving students what they need to know. The value provided is amazing." -- Tom, NY Regents Physics Teacher. "This was tremendous preparation for my physics test. I love the detailed problem solutions." -- Jenny, NY Regents Physics Student. "Regents Physics Essentials has all the information you could ever need and is much easier to understand than many other textbooks... it is an excellent review tool and is truly written for students." -- Cat, NY Regents Physics Student




Ultraviolet Radiation in the Solar System


Book Description

In the history of science the opening up of a new observational or experimental window is always followed by an increase in knowledge of the subject concerned. This is also the case with the subject of this book, ultraviolet radiation (hereafter UV). In principle, the ultraviolet range might be just one more of these windows, of no particular importance. However, the energy per UV photon provides the main peculiarity, its magnitude being great enough to produce important ch- ical reactions in the atmospheres of planets and satellites, thereby a?ecting the transmission of this radiation to the ground. The Sun is the main natural source of UV radiation in the Solar System and our planet is the body where its in?uences can be best tested and the only one where its relation with life can be studied. However, the terrestrial atmosphere blocksmostofthephotonsinthiselectromagneticrangeandastronomershavehad to develop various techniques (balloons, planes and rockets) to cross this barrier and access the information. These tools have been used in parallel to investigate the physical properties of the terrestrial atmosphere and the interaction of its constituents with light. This book will addresses most of these topics.




Radiative Processes in Astrophysics


Book Description

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.




The Fluid Catastrophe


Book Description

By abandoning classical theory and adopting a liberating, empirical approach to fluid behaviour, this book sheds new light on Global Warming, on Ice Ages, why the wind makes waves bigger, and the origin of the Earth’s magnetic field. At heart, it is concerned with how meaning can be extracted from a sequence of measurements—time series analysis. The methods developed (plus Python code) will appeal to both the graduate student and the data analyst. The “Ultraviolet Catastrophe”, the failure to account for black-body radiation, led to quantum mechanics. Another catastrophe was politely ignored and fluid dynamics remained trapped in the nineteenth century. The book outlines a solution to this dilemma. It will appeal to those interested in the philosophy of science and, more specifically, to those interested in understanding the great unsolved mystery of fluid dynamics: turbulence.




An Introduction to Thermal Physics


Book Description

This is a textbook for the standard undergraduate-level course in thermal physics. The book explores applications to engineering, chemistry, biology, geology, atmospheric science, astrophysics, cosmology, and everyday life.




Einstein and the Quantum


Book Description

The untold story of Albert Einstein's role as the father of quantum theory Einstein and the Quantum reveals for the first time the full significance of Albert Einstein's contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light—the core of what we now know as quantum theory—than he did about relativity. A compelling blend of physics, biography, and the history of science, Einstein and the Quantum shares the untold story of how Einstein—not Max Planck or Niels Bohr—was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrödinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.




Sears and Zemansky's University Physics


Book Description

Refining the most widely adopted and enduring physics text available,University Physics with Modern Physics, Twelfth Editioncontinues an unmatched history of innovation and careful execution that was established by the best selling Eleventh Edition. Assimilating the best ideas from education research, this new edition provides enhanced problem-solving instruction, pioneering visual and conceptual pedagogy, the first systematically enhanced problems, and the most pedagogically proven and widely used homework and tutorial system available.Mechanics, Waves/Acoustics, Thermodynamics, Electromagnetism, Optics, Modern Physics.For all readers interested in university physics.