Blast Furnace Phenomena and Modelling


Book Description

As ironmakers are well aware, it was only a few decades ago that the blast furnace was viewed as a strange 'black box'. Recently, however, various in-furnace phenomena have become the subject of serious scientific study, largely as the result of the 'dissection' of dead furnaces, together with the development of advanced monitoring and control techniques. In this way, a new frontier has been opened within the venerable domain of metallurgy. In the light of these new developments, the Committee on Reaction within Blast Furnaces was set up in March 1977 by the Joint Society ofIron and Steel Basic Research - a cooperative research organization of the Iron and Steel Institute of Japan (ISIJ), the Japan Institute of Metals (JIM) and the Japan Society for the Promotion of Science (JSPS). Consisting of twenty-six members and advisors drawn from the fields of academia and industry, this committee collected, discussed, and evaluated numerous papers during its five year commission. Particular attention was paid to the interpretation of findings drawn from the autopsy of dead furnaces, in the context of the live furnace state, and the correlation of data regarding cohesive zone configuration, level, and furnace performance. The results of this intense research activity are presented here in the hope that they will serve not only as a source of enrichment to the professional knowledge of researchers and operators, but also as textual material for graduate students in the field of metallurgy.




Blast Furnace Phenomena and Modelling


Book Description

As ironmakers are well aware, it was only a few decades ago that the blast furnace was viewed as a strange 'black box'. Recently, however, various in-furnace phenomena have become the subject of serious scientific study, largely as the result of the 'dissection' of dead furnaces, together with the development of advanced monitoring and control techniques. In this way, a new frontier has been opened within the venerable domain of metallurgy. In the light of these new developments, the Committee on Reaction within Blast Furnaces was set up in March 1977 by the Joint Society ofIron and Steel Basic Research - a cooperative research organization of the Iron and Steel Institute of Japan (ISIJ), the Japan Institute of Metals (JIM) and the Japan Society for the Promotion of Science (JSPS). Consisting of twenty-six members and advisors drawn from the fields of academia and industry, this committee collected, discussed, and evaluated numerous papers during its five year commission. Particular attention was paid to the interpretation of findings drawn from the autopsy of dead furnaces, in the context of the live furnace state, and the correlation of data regarding cohesive zone configuration, level, and furnace performance. The results of this intense research activity are presented here in the hope that they will serve not only as a source of enrichment to the professional knowledge of researchers and operators, but also as textual material for graduate students in the field of metallurgy.




Mathematical Modeling of the Blast Furnace Process


Book Description

This book presents the results of extensive research on the mathematical modelling of the blast furnace process. It describes the mathematical models utilised, providing insights into two-dimensional models of gas dynamics, heat transfer and reduction, the cohesion zone, and the balance equilibrium model. On the basis of these models, it details a method for the analytical study of the blast-furnace process, which essentially complements the experimental methods used in practice. Examples of the solution of practical problems of blast furnace smelting are also provided, and the mathematical models highlighted here can be used in research and design institutes, at metallurgical enterprises and for higher education institutions in the training of students in metallurgical specialties.




Advanced Pulverized Coal Injection Technology and Blast Furnace Operation


Book Description

In order to reduce the cost of running blast furnaces (BFs), injected pulverized coal is used rather than coke to fire BFs. As a result of this, unburned fine materials are blown with the gas into the bosh and dead man areas with possible detrimental effects on gas flow and permeability of the coke column. The capacity of the furnace to consume these particles by solution loss is probably one of the limitations to coal injection. It is, therefore, important to understand the physicochemical and aerodynamic behaviour of fines including the change of in-furnace phenomena.The Committee of Pulverized Coal Combustion and In-Furnace Reaction in BF was set up in 1993 as a cooperative research of the Japan Society for the Promotion of Science (JSPS) and the Iron and Steel Institute (ISIJ) to evaluate research initiative into this problem.This book reports on the JSPS/ISIJ Committee's activities and describes the interpretation of findings drawn from combustion experiments and the results of live furnace applications, and furnace performance.




CFD Modeling and Simulation in Materials Processing


Book Description

Proceedings of a symposium sponsored by Association for Iron and Steel Technology and the Process Technology and Modeling Committee of the Extraction and Processing Division and the Solidification Committee of the Materials Processing and Manufacturing Division of TMS (The Minerals, Metals & Materials Society) Held during the TMS 2012 Annual Meeting & Exhibition Orlando, Florida, USA, March 11-15, 2012




Clean Ironmaking and Steelmaking Processes


Book Description

​This book describes the available technologies that can be employed to reduce energy consumption and greenhouse emissions in the steel- and ironmaking industries. Ironmaking and steelmaking are some of the largest emitters of carbon dioxide (over 2Gt per year) and have some of the highest energy demand (25 EJ per year) among all industries; to help mitigate this problem, the book examines how changes can be made in energy efficiency, including energy consumption optimization, online monitoring, and energy audits. Due to negligible regulations and unparalleled growth in these industries during the past 15-20 years, knowledge of best practices and innovative technologies for greenhouse gas remediation is paramount, and something this book addresses. Presents the most recent technological solutions in productivity analyses and dangerous emissions control and reduction in steelmaking plants; Examines the energy saving and emissions abatement efficiency for potential solutions to emission control and reduction in steelmaking plants; Discusses the application of the results of research conducted over the last ten years at universities, research centers, and industrial institutions.







Process Modelling and Simulation


Book Description

Since process models are nowadays ubiquitous in many applications, the challenges and alternatives related to their development, validation, and efficient use have become more apparent. In addition, the massive amounts of both offline and online data available today open the door for new applications and solutions. However, transforming data into useful models and information in the context of the process industry or of bio-systems requires specific approaches and considerations such as new modelling methodologies incorporating the complex, stochastic, hybrid and distributed nature of many processes in particular. The same can be said about the tools and software environments used to describe, code, and solve such models for their further exploitation. Going well beyond mere simulation tools, these advanced tools offer a software suite built around the models, facilitating tasks such as experiment design, parameter estimation, model initialization, validation, analysis, size reduction, discretization, optimization, distributed computation, co-simulation, etc. This Special Issue collects novel developments in these topics in order to address the challenges brought by the use of models in their different facets, and to reflect state of the art developments in methods, tools and industrial applications.




Industrial and Process Furnaces


Book Description

Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency, burner design and selection, aerodynamics, heat release profiles, furnace atmosphere, safety and emissions. These elements and more are brought together to illustrate how to achieve optimum design and operation, with real-world case studies to showcase their application. - Up-to-date and comprehensive reference encompassing not only best practice of operation but the essential elements of furnace theory and design, essential to anyone working with furnaces, ovens and combustion-based systems. - More case studies, more worked examples. - New material in this second edition includes further application of Computational Fluid Dynamics (CFD), with additional content on flames and burners, costs, efficiencies and future trends.




Theory and Calculation of Heat Transfer in Furnaces


Book Description

Theory and Calculation of Heat Transfer in Furnaces covers the heat transfer process in furnaces, how it is related to energy exchange, the characteristics of efficiency, and the cleaning of combustion, providing readers with a comprehensive understanding of the simultaneous physical and chemical processes that occur in boiler combustion, flow, heat transfer, and mass transfer. - Covers all the typical boilers with most fuels, as well as the effects of ash deposition and slagging on heat transfer - Combines mature and advanced technologies that are easy to understand and apply - Describes basic theory with real design that is based on meaningful experimental data