Signal Reconstruction Algorithms for Time-Interleaved ADCs


Book Description

An analog-to-digital converter (ADC) is a key component in many electronic systems. It is used to convert analog signals to the equivalent digital form. The conversion involves sampling which is the process of converting a continuous-time signal to a sequence of discrete-time samples, and quantization in which each sampled value is represented using a finite number of bits. The sampling rate and the effective resolution (number of bits) are two key ADC performance metrics. Today, ADCs form a major bottleneck in many applications like communication systems since it is difficult to simultaneously achieve high sampling rate and high resolution. Among the various ADC architectures, the time-interleaved analog-to-digital converter (TI-ADC) has emerged as a popular choice for achieving very high sampling rates and resolutions. At the principle level, by interleaving the outputs of M identical channel ADCs, a TI-ADC could achieve the same resolution as that of a channel ADC but with M times higher bandwidth. However, in practice, mismatches between the channel ADCs result in a nonuniformly sampled signal at the output of a TI-ADC which reduces the achievable resolution. Often, in TIADC implementations, digital reconstructors are used to recover the uniform-grid samples from the nonuniformly sampled signal at the output of the TI-ADC. Since such reconstructors operate at the TI-ADC output rate, reducing the number of computations required per corrected output sample helps to reduce the power consumed by the TI-ADC. Also, as the mismatch parameters change occasionally, the reconstructor should support online reconfiguration with minimal or no redesign. Further, it is advantageous to have reconstruction schemes that require fewer coefficient updates during reconfiguration. In this thesis, we focus on reducing the design and implementation complexities of nonrecursive finite-length impulse response (FIR) reconstructors. We propose efficient reconstruction schemes for three classes of nonuniformly sampled signals that can occur at the output of TI-ADCs. Firstly, we consider a class of nonuniformly sampled signals that occur as a result of static timing mismatch errors or due to channel mismatches in TI-ADCs. For this type of nonuniformly sampled signals, we propose three reconstructors which utilize a two-rate approach to derive the corresponding single-rate structure. The two-rate based reconstructors move part of the complexity to a symmetric filter and also simplifies the reconstruction problem. The complexity reduction stems from the fact that half of the impulse response coefficients of the symmetric filter are equal to zero and that, compared to the original reconstruction problem, the simplified problem requires only a simpler reconstructor. Next, we consider the class of nonuniformly sampled signals that occur when a TI-ADC is used for sub-Nyquist cyclic nonuniform sampling (CNUS) of sparse multi-band signals. Sub-Nyquist sampling utilizes the sparsities in the analog signal to sample the signal at a lower rate. However, the reduced sampling rate comes at the cost of additional digital signal processing that is needed to reconstruct the uniform-grid sequence from the sub-Nyquist sampled sequence obtained via CNUS. The existing reconstruction scheme is computationally intensive and time consuming and offsets the gains obtained from the reduced sampling rate. Also, in applications where the band locations of the sparse multi-band signal can change from time to time, the reconstructor should support online reconfigurability. Here, we propose a reconstruction scheme that reduces the computational complexity of the reconstructor and at the same time, simplifies the online reconfigurability of the reconstructor. Finally, we consider a class of nonuniformly sampled signals which occur at the output of TI-ADCs that use some of the input sampling instants for sampling a known calibration signal. The samples corresponding to the calibration signal are used for estimating the channel mismatch parameters. In such TI-ADCs, nonuniform sampling is due to the mismatches between the channel ADCs and due to the missing input samples corresponding to the sampling instants reserved for the calibration signal. We propose three reconstruction schemes for such nonuniformly sampled signals and show using design examples that, compared to a previous solution, the proposed schemes require substantially lower computational complexity.







Nyquist AD Converters, Sensor Interfaces, and Robustness


Book Description

This book is based on the 18 presentations during the 21st workshop on Advances in Analog Circuit Design. Expert designers provide readers with information about a variety of topics at the frontier of analog circuit design, including Nyquist analog-to-digital converters, capacitive sensor interfaces, reliability, variability, and connectivity. This book serves as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.




Machine Intelligence and Signal Analysis


Book Description

The book covers the most recent developments in machine learning, signal analysis, and their applications. It covers the topics of machine intelligence such as: deep learning, soft computing approaches, support vector machines (SVMs), least square SVMs (LSSVMs) and their variants; and covers the topics of signal analysis such as: biomedical signals including electroencephalogram (EEG), magnetoencephalography (MEG), electrocardiogram (ECG) and electromyogram (EMG) as well as other signals such as speech signals, communication signals, vibration signals, image, and video. Further, it analyzes normal and abnormal categories of real-world signals, for example normal and epileptic EEG signals using numerous classification techniques. The book is envisioned for researchers and graduate students in Computer Science and Engineering, Electrical Engineering, Applied Mathematics, and Biomedical Signal Processing.




Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters


Book Description

Analog-to-Digital Converters (ADCs) play an important role in most modern signal processing and wireless communication systems where extensive signal manipulation is necessary to be performed by complicated digital signal processing (DSP) circuitry. This trend also creates the possibility of fabricating all functional blocks of a system in a single chip (System On Chip - SoC), with great reductions in cost, chip area and power consumption. However, this tendency places an increasing challenge, in terms of speed, resolution, power consumption, and noise performance, in the design of the front-end ADC which is usually the bottleneck of the whole system, especially under the unavoidable low supply-voltage imposed by technology scaling, as well as the requirement of battery operated portable devices. Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters will present new techniques tailored for low-voltage and high-speed Switched-Capacitor (SC) ADC with various design-specific considerations.




Selected Papers from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP)


Book Description

This Special Issue contains a series of excellent research works on telecommunications and signal processing, selected from the 2018 41st International Conference on Telecommunications and Signal Processing (TSP) which was held on July 4–6, 2018, in Athens, Greece. The conference was organized in cooperation with the IEEE Region 8 (Europe, Middle East, and Africa), IEEE Greece Section, IEEE Czechoslovakia Section, and IEEE Czechoslovakia Section SP/CAS/COM Joint Chapter by seventeen universities from the Czech Republic, Hungary, Turkey, Taiwan, Japan, Slovak Republic, Spain, Bulgaria, France, Slovenia, Croatia, and Poland, for academics, researchers, and developers, and serves as a premier international forum for the annual exchange and promotion of the latest advances in telecommunication technology and signal processing. The aim of the conference is to bring together both novice and experienced scientists, developers, and specialists, to meet new colleagues, collect new ideas, and establish new cooperation between research groups from universities, research centers, and private sectors worldwide. This collection of 10 papers is highly recommended for researchers, and believed to be interesting, inspiring, and motivating for readers in their further research.




Academic Press Library in Signal Processing


Book Description

This first volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in machine learning and advanced signal processing theory. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in machine learning - Presents core principles in signal processing theory and shows their applications - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic




Digitally-Assisted Analog and Analog-Assisted Digital IC Design


Book Description

Achieve enhanced performance with this guide to cutting-edge techniques for digitally-assisted analog and analog-assisted digital integrated circuit design. • Discover how architecture and circuit innovations can deliver improved performance in terms of speed, density, power, and cost • Learn about practical design considerations for high-performance scaled CMOS processes, FinFet devices and architectures, and the implications of FD SOI technology • Get up to speed with established circuit techniques that take advantage of scaled CMOS process technology in analog, digital, RF and SoC designs, including digitally-assisted techniques for data converters, DSP enabled frequency synthesizers, and digital controllers for switching power converters. With detailed descriptions, explanations, and practical advice from leading industry experts, this is an ideal resource for practicing engineers, researchers, and graduate students working in circuit design.




Trends in Digital Signal Processing


Book Description

Digital signal processing is ubiquitous. It is an essential ingredient in many of today's electronic devices, ranging from medical equipment to weapon systems. It makes the difference between dumb and intelligent systems. This book is organized into five parts: (1) Introduction, which contains an account of Prof. Constantinides' contribution to the