Realization of Bose-Einstein Condensation of Rubidium-87 in a Time-Orbiting Potential Trap


Book Description

The construction of an apparatus capable of producing Bose-Einstein condensates marks a significant milestone in every experimental cold atom laboratory. In this thesis I describe the development of a system to create a Bose-Einstein condensate of 87RB in a Time-Orbiting Potential trap.I review the optical and magnetic techniques required to trap and cool an atomic sample under vacuum, motivating our decision to build a double MOT system comprised of a high-pressure (10-9 torr) chamber to gather atoms and a low-pressure (10-11 torr) chamber to cool atoms to degeneracy.By theoretically modeling the atom number and temperature inside the magnetic trap during evaporative cooling I demonstrate a simple approach to determining a cooling path that reaches the transition temperature. By making use of the condensates produced under these non-optimized conditions I determine the heating rate of the condensate in the TOP trap to be 300 nK/s. I further use the condensates to make a more precise measurement of the TOP trap bias field.I improve upon the conventional evaporation path used in TOP trap experiments by introducing and optimizing additional bias field compression stages in between RF evaporation ramps. I demonstrate how, by adding these additional stages, the system is capable of reaching the BEC phase transition with a final atom number of 2x 105. In contrast, RF evaporation after only a single bias field ramp has yielded condensates with only 30 x 103 atoms.




Lectures on Quantum Mechanics


Book Description

Beautifully illustrated and engagingly written, Twelve Lectures in Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant’s style is clear and stimulating, in the manner of a brisk lecture that can be followed with ease and enjoyment. Here is a sample of the book’s style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be ‘E = mc2’.... There is no way around it: all physics is quantum, from elementary particles, to stellar physics and the Big Bang, not to mention semiconductors and solar cells."







Bose-Einstein Condensation in Atomic Gases


Book Description

Although first proposed by Einstein in 1924, Bose-Einstein condensation (BEC) in a gas was not achieved until 1995 when, using a combination of laser cooling and trapping, and magnetic trapping and evaporation, it was first observed in rubidium and then in lithium and sodium, cooled down to extremely low temperatures. This book brought together many leaders in both theory and experiment on Bose-Einstein condensation in gases. Their lectures provided a detailed coverage of the experimental techniques for the creation and study of BEC, as well as the theoretical foundation for understanding the properties of this novel system. This volume provides the first systematic review of the field and the many developments that have taken place in the past three years.




Bose-einstein Condensation - From Atomic Physics To Quantum Fluids, Procs Of The 13th Physics Summer Sch


Book Description

Bose-Einstein condensation of dilute gases is an exciting new field of interdisciplinary physics. The eight chapters in this volume introduce its theoretical and experimental foundations. The authors are lucid expositors who have also made outstanding contributions to the field. They include theorists Tony Leggett, Allan Griffin and Keith Burnett, and Nobel-Prize-winning experimentalist Bill Phillips. In addition to the introductory material, there are articles treating topics at the forefront of research, such as experimental quantum phase engineering of condensates, the “superchemistry” of interacting atomic and molecular condensates, and atom laser theory.




Quantum Mechanics


Book Description

Gives a fresh and modern approach to the field. It is a textbook on the principles of the theory, its mathematical framework and its first applications. It constantly refers to modern and practical developments, tunneling microscopy, quantum information, Bell inequalities, quantum cryptography, Bose-Einstein condensation and quantum astrophysics. The book also contains 92 exercises with their solutions.










Bose-Einstein Condensates and Atom Lasers


Book Description

Proceedings of the International School of Quantum Electronics 27th course on Bose Einstein Condensates and Atom Lasers, October 19-24, 1999, Erice, Italy. Since the experimental demonstration of Bose Einstein Condensation in dilute atomic gases there has been an explosion of interest in the properties of this novel macroscopic quantum system. The book covers the methods used to produce these new samples of coherent atoms, their manipulation and the study of their properties. Emphasis is given to the anticipated development of new types of sources, which more and more resemble traditional types of lasers. Because of recent new applications and increasing demand for lasers, sensors and associated instrumentation, the chapters also cover current developments in the basic techniques, materials and applications in the field of the generation of coherent atoms.