Bottom-Up Self-Organization in Supramolecular Soft Matter


Book Description

This book presents the general concepts of self-organized spatio-temporal ordering processes. These concepts are demonstrated via prototypical examples of recent advances in materials science. Particular emphasis is on nano scale soft matter in physics, chemistry, biology and biomedicine. The questions addressed embrace a broad spectrum of complex nonlinear phenomena, ranging from self-assembling near the thermodynamical equilibrium to dissipative structure formation far from equilibrium. Their mutual interplay gives rise to increasing degrees of hierarchical order. Analogues are pointed out, differences characterized and efforts are made to reveal common features in the mechanistic description of those phenomena.




Supramolecular Nanotechnology


Book Description

Supramolecular Nanotechnology Provides up-to-date coverage of both current knowledge and new developments in the dynamic and interdisciplinary field of supramolecular nanotechnology In recent years, supramolecular nanotechnology has revolutionized research in chemistry, physics, and materials science. These easily manipulated molecular units enable the synthesis of novel nanomaterials for use in a wide range of current and potential applications including electronics, sensors, drug delivery, and imaging. Supramolecular Nanotechnology presents a state-of-the-art overview of functional self-assembling nanomaterials based on organic and polymeric molecules. Featuring contributions by an international panel of experts in the field, this comprehensive volume covers the design of self-assembled materials, their synthesis and diverse fabrication methods, the characterization of supramolecular architectures, and current and emerging applications in chemistry, biology, and medicine. Detailed chapters discuss the synthesis of peptide-based supramolecular structures and polymeric self-assembling materials, their characterization, advanced microscopy techniques, nanostructures made of porphyrins, polyelectrolytes, silica, their application in catalysis and cancer, atomistic and coarse-grained simulations, and more. Presents cutting-edge research on rationally designed, self-assembled supramolecular structures Discusses the impact of supramolecular nanotechnology on current and future research and technology Highlights applications of self-assembled supramolecular systems in catalysis, biomedical imaging, cancer therapies, and regenerative medicine Provides synthetic strategies for preparing the molecular assemblies and various characterization techniques for assessing the supramolecular morphology Describes theoretical modeling and simulation techniques for analyzing supramolecular nanostructures Supramolecular Nanotechnology: Advanced Design of Self-Assembled Functional Materials is essential reading for materials scientists and engineers, polymer and organic chemists, pharmaceutical scientists, molecular physicists and biologists, and chemical engineers.




Supramolecular Chemistry


Book Description

Supramolecular chemistry is ‘chemistry beyond the molecule’ - the chemistry of molecular assemblies and intermolecular bonds. It is one of today’s fastest growing disciplines, crossing a range of subjects from biological chemistry to materials science; and from synthesis to spectroscopy. Supramolecular Chemistry is an up-to-date, integrated textbook that tells the newcomer to the field everything they need to know to get started. Assuming little in the way of prior knowledge, the book covers the concepts behind the subject, its breadth, applications and the latest contemporary thinking in the area. It also includes coverage of the more important experimental and instrumental techniques needed by supramolecular chemists. The book has been thoroughly updated for this second edition. In addition to the strengths of the very popular first edition, this comprehensive new version expands coverage into a broad range of emerging areas. Clear explanations of both fundamental and nascent concepts are supplemented by up-to-date coverage of exciting emerging trends in the literature. Numerous examples and problems are included throughout the book. A system of “key references” allows rapid access to the secondary literature, and of course comprehensive primary literature citations are provided. A selection of the topics covered is listed below. Cation, anion, ion-pair and molecular host-guest chemistry Crystal engineering Topological entanglement Clathrates Self-assembly Molecular devices Dendrimers Supramolecular polymers Microfabrication Nanoparticles Chemical emergence Metal-organic frameworks Gels Ionic liquids Supramolecular catalysis Molecular electronics Polymorphism Gas sorption Anion-pinteractions Nanochemistry Supramolecular Chemistry is a must for both students new to the field and for experienced researchers wanting to explore the origins and wider context of their work. Review: "At just under 1000 pages, the second edition of Steed and Atwood's Supramolecular Chemistry is the most comprehensive overview of the area available in textbook form...highly recommended." —Chemistry World, August 2009




Handbook of Nanofabrication


Book Description

Many of the devices and systems used in modern industry are becoming progressively smaller and have reached the nanoscale domain. Nanofabrication aims at building nanoscale structures, which can act as components, devices, or systems, in large quantities at potentially low cost. Nanofabrication is vital to all nanotechnology fields, especially for the realization of nanotechnology that involves the traditional areas across engineering and science. - Includes chapters covering the most important Nanofabrication techniques, which aids comprehensive understanding of the latest manufacturing technologies encountered in the field of nano-level manufacturing which is essential for preparing for advanced study and application in nanofabrication techniques by enabling thorough understanding of the entire nanofabrication process as it applies to advanced electronic and related manufacturing technologies - Each chapter covers a nanofabrication technique comprehensively, which allows the reader to learn to produce nanometer-level products as well as collect, process, and analyze data, improve process parameters, and how to assist engineers in research, development and manufacture of the same - Includes contributions from recognized experts from around the globe, making the reader aware of variations in similar techniques applied in different geographical locations and is better positioned to establish all possible global applications




Nanobiomaterials


Book Description

Nanobiomaterials: Nanostructured materials for biomedical applications covers an extensive range of topics related to the processing, characterization, modeling, and biomedical applications of nanostructured ceramics, polymers, metals, composites, self-assembled materials, and macromolecules. Novel approaches for bottom-up and top-down processing of nanostructured biomaterials are highlighted. In addition, innovative techniques for characterizing the in vitro behavior and in vivo behavior of nanostructured biomaterials are considered. Applications of nanostructured biomaterials in dentistry, drug delivery, medical diagnostics, surgery and tissue engineering are examined. - Provides a concise description of the materials and technologies used in the development of nanostructured biomaterials - Provides industrial researchers with an up-to-date and handy reference on current topics in the field of nanostructured biomaterials - Includes an integrated approach that is used to discuss both the biological and engineering aspects of nanostructured biomaterials