Boundary Conditions and Subelliptic Estimates for Geometric Kramers-Fokker-Planck Operators on Manifolds with Boundaries


Book Description

This article is concerned with the maximal accretive realizations of geometric Kramers-Fokker-Planck operators on manifolds with boundaries. A general class of boundary conditions is introduced which ensures the maximal accretivity and some global subelliptic estimates. Those estimates imply nice spectral properties as well as exponential decay properties for the associated semigroup. Admissible boundary conditions cover a wide range of applications for the usual scalar Kramer-Fokker-Planck equation or Bismut's hypoelliptic laplacian.




Measure and Capacity of Wandering Domains in Gevrey Near-Integrable Exact Symplectic Systems


Book Description

A wandering domain for a diffeomorphism of is an open connected set such that for all . The authors endow with its usual exact symplectic structure. An integrable diffeomorphism, i.e., the time-one map of a Hamiltonian which depends only on the action variables, has no nonempty wandering domains. The aim of this paper is to estimate the size (measure and Gromov capacity) of wandering domains in the case of an exact symplectic perturbation of , in the analytic or Gevrey category. Upper estimates are related to Nekhoroshev theory; lower estimates are related to examples of Arnold diffusion. This is a contribution to the “quantitative Hamiltonian perturbation theory” initiated in previous works on the optimality of long term stability estimates and diffusion times; the emphasis here is on discrete systems because this is the natural setting to study wandering domains.




On Fusion Systems of Component Type


Book Description

This memoir begins a program to classify a large subclass of the class of simple saturated 2-fusion systems of component type. Such a classification would be of great interest in its own right, but in addition it should lead to a significant simplification of the proof of the theorem classifying the finite simple groups. Why should such a simplification be possible? Part of the answer lies in the fact that there are advantages to be gained by working with fusion systems rather than groups. In particular one can hope to avoid a proof of the B-Conjecture, a important but difficult result in finite group theory, established only with great effort.




Covering Dimension of C*-Algebras and 2-Coloured Classification


Book Description

The authors introduce the concept of finitely coloured equivalence for unital -homomorphisms between -algebras, for which unitary equivalence is the -coloured case. They use this notion to classify -homomorphisms from separable, unital, nuclear -algebras into ultrapowers of simple, unital, nuclear, -stable -algebras with compact extremal trace space up to -coloured equivalence by their behaviour on traces; this is based on a -coloured classification theorem for certain order zero maps, also in terms of tracial data. As an application the authors calculate the nuclear dimension of non-AF, simple, separable, unital, nuclear, -stable -algebras with compact extremal trace space: it is 1. In the case that the extremal trace space also has finite topological covering dimension, this confirms the remaining open implication of the Toms-Winter conjecture. Inspired by homotopy-rigidity theorems in geometry and topology, the authors derive a “homotopy equivalence implies isomorphism” result for large classes of -algebras with finite nuclear dimension.




Algebraic $\overline {\mathbb {Q}}$-Groups as Abstract Groups


Book Description

The author analyzes the abstract structure of algebraic groups over an algebraically closed field . For of characteristic zero and a given connected affine algebraic Q -group, the main theorem describes all the affine algebraic Q -groups such that the groups and are isomorphic as abstract groups. In the same time, it is shown that for any two connected algebraic Q -groups and , the elementary equivalence of the pure groups and implies that they are abstractly isomorphic. In the final section, the author applies his results to characterize the connected algebraic groups, all of whose abstract automorphisms are standard, when is either Q or of positive characteristic. In characteristic zero, a fairly general criterion is exhibited.




Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem


Book Description

The author proves the existence of an almost full measure set of -dimensional quasi-periodic motions in the planetary problem with masses, with eccentricities arbitrarily close to the Levi–Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold in the 1960s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group. The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, a common tool of previous literature.




Bordered Heegaard Floer Homology


Book Description

The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.




A Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture


Book Description

In the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture.