Boundary Values And Convolution In Ultradistribution Spaces


Book Description

This book provides the construction and characterization of important ultradistribution spaces and studies properties and calculations of ultradistributions such as boundedness and convolution. Integral transforms of ultradistributions are constructed and analyzed. The general theory of the representation of ultradistributions as boundary values of analytic functions is obtained and the recovery of the analytic functions as Cauchy, Fourier-Laplace, and Poisson integrals associated with the boundary value is proved.Ultradistributions are useful in applications in quantum field theory, partial differential equations, convolution equations, harmonic analysis, pseudo-differential theory, time-frequency analysis, and other areas of analysis. Thus this book is of interest to users of ultradistributions in applications as well as to research mathematicians in areas of analysis.




Pseudo-Differential Operators and Generalized Functions


Book Description

This book gathers peer-reviewed contributions representing modern trends in the theory of generalized functions and pseudo-differential operators. It is dedicated to Professor Michael Oberguggenberger (Innsbruck University, Austria) in honour of his 60th birthday. The topics covered were suggested by the ISAAC Group in Generalized Functions (GF) and the ISAAC Group in Pseudo-Differential Operators (IGPDO), which met at the 9th ISAAC congress in Krakow, Poland in August 2013. Topics include Columbeau algebras, ultra-distributions, partial differential equations, micro-local analysis, harmonic analysis, global analysis, geometry, quantization, mathematical physics, and time-frequency analysis. Featuring both essays and research articles, the book will be of great interest to graduate students and researchers working in analysis, PDE and mathematical physics, while also offering a valuable complement to the volumes on this topic previously published in the OT series.




Generalized Functions and Fourier Analysis


Book Description

This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis. The volume is a collection of chapters addressing these fields, their interaction, their unifying concepts and their applications and is based on scientific activities related to the International Association for Generalized Functions (IAGF) and the ISAAC interest groups on Pseudo-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC.







Topics In Mathematical Analysis


Book Description

This volume consists of a series of lecture notes on mathematical analysis. The contributors have been selected on the basis of both their outstanding scientific level and their clarity of exposition. Thus, the present collection is particularly suited to young researchers and graduate students. Through this volume, the editors intend to provide the reader with material otherwise difficult to find and written in a manner which is also accessible to nonexperts.




Nonlinear Waves


Book Description

Big Nate is the star goalie of his school's soccer team, and he is tasked with defending his goal and saving the day against Jefferson Middle School, their archrival.




Asymptotic Behavior of Generalized Functions


Book Description

The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed approaches related to generalized functions are those of Vladimirov, Drozhinov and Zavyalov, and that of Kanwal and Estrada. The first approach is followed by the authors of this book and extended in the direction of the S-asymptotics. The second approach ? of Estrada, Kanwal and Vindas ? is related to moment asymptotic expansions of generalized functions and the Ces'aro behavior. The main features of this book are the uses of strong methods of functional analysis and applications to the analysis of asymptotic behavior of solutions to partial differential equations, Abelian and Tauberian type theorems for integral transforms as well as for the summability of Fourier series and integrals. The book can be used by applied mathematicians, physicists, engineers and others who use classical asymptotic methods and wish to consider non-classical objects (generalized functions) and their asymptotics now in a more advanced setting.




Complex Analysis


Book Description

This book is ideal for a one-semester course for advanced undergraduate students and first-year graduate students in mathematics. It is a straightforward and coherent account of a body of knowledge in complex analysis, from complex numbers to Cauchy's integral theorems and formulas to more advanced topics such as automorphism groups, the Schwarz problem in partial differential equations, and boundary behavior of harmonic functions.The book covers a wide range of topics, from the most basic complex numbers to those that underpin current research on some aspects of analysis and partial differential equations. The novelty of this book lies in its choice of topics, genesis of presentation, and lucidity of exposition.




The Linearised Dam-break Problem


Book Description

The monograph addresses a canonical problem in linear water wave theory, through the development-detailed, asymptotic analysis of contour integrals in the complex plane. It is anticipated that the methodology developed in the monograph will have applications to many associated linear wave evolution problems, to which the reader may adapt the approach developed in the monograph. The approach adopted in the monograph is novel, and there are no existing publications for comparison.




Nonlinear Waves: A Geometrical Approach


Book Description

This volume provides an in-depth treatment of several equations and systems of mathematical physics, describing the propagation and interaction of nonlinear waves as different modifications of these: the KdV equation, Fornberg-Whitham equation, Vakhnenko equation, Camassa-Holm equation, several versions of the NLS equation, Kaup-Kupershmidt equation, Boussinesq paradigm, and Manakov system, amongst others, as well as symmetrizable quasilinear hyperbolic systems arising in fluid dynamics.Readers not familiar with the complicated methods used in the theory of the equations of mathematical physics (functional analysis, harmonic analysis, spectral theory, topological methods, a priori estimates, conservation laws) can easily be acquainted here with different solutions of some nonlinear PDEs written in a sharp form (waves), with their geometrical visualization and their interpretation. In many cases, explicit solutions (waves) having specific physical interpretation (solitons, kinks, peakons, ovals, loops, rogue waves) are found and their interactions are studied and geometrically visualized. To do this, classical methods coming from the theory of ordinary differential equations, the dressing method, Hirota's direct method and the method of the simplest equation are introduced and applied. At the end, the paradifferential approach is used.This volume is self-contained and equipped with simple proofs. It contains many exercises and examples arising from the applications in mechanics, physics, optics and, quantum mechanics.