Brain and Human Body Modeling


Book Description

This open access book describes modern applications of computational human modeling with specific emphasis in the areas of neurology and neuroelectromagnetics, depression and cancer treatments, radio-frequency studies and wireless communications. Special consideration is also given to the use of human modeling to the computational assessment of relevant regulatory and safety requirements. Readers working on applications that may expose human subjects to electromagnetic radiation will benefit from this book’s coverage of the latest developments in computational modelling and human phantom development to assess a given technology’s safety and efficacy in a timely manner. Describes construction and application of computational human models including anatomically detailed and subject specific models; Explains new practices in computational human modeling for neuroelectromagnetics, electromagnetic safety, and exposure evaluations; Includes a survey of modern applications for which computational human models are critical; Describes cellular-level interactions between the human body and electromagnetic fields.




Brain and Human Body Modeling 2020


Book Description

The 41st Annual International Conference of the IEEE EMBS, took place between July 23 and 27, 2019, in Berlin, Germany. The focus was on "Biomedical engineering ranging from wellness to intensive care." This conference provided an opportunity for researchers from academia and industry to discuss a variety of topics relevant to EMBS and hosted the 4th Annual Invited Session on Computational Human Models. At this session, a bevy of research related to the development of human phantoms was presented, together with a substantial variety of practical applications explored through simulation.




Multiscale Biomechanical Modeling of the Brain


Book Description

Multiscale Biomechanical Modeling of the Brain discusses the constitutive modeling of the brain at various length scales (nanoscale, microscale, mesoscale, macroscale and structural scale). In each scale, the book describes the state-of-the- experimental and computational tools used to quantify critical deformational information at each length scale. Then, at the structural scale, several user-based constitutive material models are presented, along with real-world boundary value problems. Lastly, design and optimization concepts are presented for use in occupant-centric design frameworks. This book is useful for both academia and industry applications that cover basic science aspects or applied research in head and brain protection. The multiscale approach to this topic is unique, and not found in other books. It includes meticulously selected materials that aim to connect the mechanistic analysis of the brain tissue at size scales ranging from subcellular to organ levels. Presents concepts in a theoretical and thermodynamic framework for each length scale Teaches readers not only how to use an existing multiscale model for each brain but also how to develop a new multiscale model Takes an integrated experimental-computational approach and gives structured multiscale coverage of the problems




Models of the Mind


Book Description

The human brain is made up of 85 billion neurons, which are connected by over 100 trillion synapses. For more than a century, a diverse array of researchers searched for a language that could be used to capture the essence of what these neurons do and how they communicate – and how those communications create thoughts, perceptions and actions. The language they were looking for was mathematics, and we would not be able to understand the brain as we do today without it. In Models of the Mind, author and computational neuroscientist Grace Lindsay explains how mathematical models have allowed scientists to understand and describe many of the brain's processes, including decision-making, sensory processing, quantifying memory, and more. She introduces readers to the most important concepts in modern neuroscience, and highlights the tensions that arise when the abstract world of mathematical modelling collides with the messy details of biology. Each chapter of Models of the Mind focuses on mathematical tools that have been applied in a particular area of neuroscience, progressing from the simplest building block of the brain – the individual neuron – through to circuits of interacting neurons, whole brain areas and even the behaviours that brains command. In addition, Grace examines the history of the field, starting with experiments done on frog legs in the late eighteenth century and building to the large models of artificial neural networks that form the basis of modern artificial intelligence. Throughout, she reveals the value of using the elegant language of mathematics to describe the machinery of neuroscience.




The Human Brain Book


Book Description

The Human Brain Book is a complete guide to the one organ in the body that makes each of us what we are - unique individuals. It combines the latest findings from the field of neuroscience with expert text and state-of-the-art illustrations and imaging techniques to provide an incomparable insight into every facet of the brain. Layer by layer, it reveals the fascinating details of this remarkable structure, covering all the key anatomy and delving into the inner workings of the mind, unlocking its many mysteries, and helping you to understand what's going on in those millions of little gray and white cells. Tricky concepts are illustrated and explained with clarity and precision, as The Human Brain Book looks at how the brain sends messages to the rest of the body, how we think and feel, how we perform unconscious actions (for example, breathing), explores the nature of genius, asks why we behave the way we do, explains how we see and hear things, and how and why we dream. Physical and psychological disorders affecting the brain and nervous system are clearly illustrated and summarized in easy-to-understand terms.




Human Brain Function


Book Description

This updated second edition provides the state of the art perspective of the theory, practice and application of modern non-invasive imaging methods employed in exploring the structural and functional architecture of the normal and diseased human brain. Like the successful first edition, it is written by members of the Functional Imaging Laboratory - the Wellcome Trust funded London lab that has contributed much to the development of brain imaging methods and their application in the last decade. This book should excite and intrigue anyone interested in the new facts about the brain gained from neuroimaging and also those who wish to participate in this area of brain science.* Represents an almost entirely new book from 1st edition, covering the rapid advances in methods and in understanding of how human brains are organized* Reviews major advances in cognition, perception, emotion and action* Introduces novel experimental designs and analytical techniques made possible with fMRI, including event-related designs and non-linear analysis




Human Brain Theory


Book Description

The book was written as an attempt to find the solution to one of the most complex and unsolved issues of the human anatomy: the understanding of the human brain and the principles according to which it operates. Currently, it is important to look at the challenge in an alternatively non-standard, yet still systemic way, paying less attention to details and outlining the ways out of this crisis of neuroscience. The purpose of this monograph is to describe the author's theory about the brain's architecture and operation to the medical and scientific community. Accompanied with extensive clinical, research and training experience, the author's theoretical concepts of the brain synthesized with scientific evidence brought about the conclusion that low efficiency in neurologic therapy and mental diseases; the inability to work out mathematical models and simulations that could compete with the human brain; an academic dead end in the development of artificial intelligence; as well as high energy consumption of the computing innovations were conditioned by the inaccurate methodology and outdated anatomical and physiological views of the neurologists and neuroscientists on information processing in the brain, registration of memories and basic functions of the key morphological structures of the brain. The morphological structure and physiological functions of all known anatomical formations of the brain were defined in the late nineteenth century. Since then, these functions have been accepted as dogmatic. The book shows that present day multi-level neuroresearch relies on the foundation of systemic, morphofunctional and neuroanatomic knowledge about the brain structure. It looks for correlations between genome and post-genome data of molecular research in the brain tissue, as well as with neuropsychological and cognitive data; that is, the book intends to integrate the non-integrable into unified information space. The systemic approach in neuroresearch has become outdated by now and interferes with scientific development. The information approach in the author's research of the genome, transcriptome, proteome in health and in disease permitted the analysis of the inductivity and magnetization of the nervous tissue. It also provided the explanation for targeted movement of the data in the module of the nervous tissue. The author came to the conclusion that gene, protein and neural networks "confused and chained" the pathways of scientific thought. Neural networks are only logistic constructions to provide data transfer in the brain between different modules of the nervous tissue. The author presumes that the funds invested in the development of brain simulations and artificial intelligence will hardly result in the expected advantages. If we are unable to step over the stereotypes of the systemic, morphofunctional research of the previous century, no progress shall come about. The author's theoretical survey resulted in the unique information-commutation theory of the brain and formulation of the key principles of brain operation. As a clinician and professor of neurology, the author underpins his theory with clinical examples. This book presents the framework of the ideas that require experimental research and proof.




The Human Advantage


Book Description

Why our human brains are awesome, and how we left our cousins, the great apes, behind: a tale of neurons and calories, and cooking. Humans are awesome. Our brains are gigantic, seven times larger than they should be for the size of our bodies. The human brain uses 25% of all the energy the body requires each day. And it became enormous in a very short amount of time in evolution, allowing us to leave our cousins, the great apes, behind. So the human brain is special, right? Wrong, according to Suzana Herculano-Houzel. Humans have developed cognitive abilities that outstrip those of all other animals, but not because we are evolutionary outliers. The human brain was not singled out to become amazing in its own exclusive way, and it never stopped being a primate brain. If we are not an exception to the rules of evolution, then what is the source of the human advantage? Herculano-Houzel shows that it is not the size of our brain that matters but the fact that we have more neurons in the cerebral cortex than any other animal, thanks to our ancestors' invention, some 1.5 million years ago, of a more efficient way to obtain calories: cooking. Because we are primates, ingesting more calories in less time made possible the rapid acquisition of a huge number of neurons in the still fairly small cerebral cortex—the part of the brain responsible for finding patterns, reasoning, developing technology, and passing it on through culture. Herculano-Houzel shows us how she came to these conclusions—making “brain soup” to determine the number of neurons in the brain, for example, and bringing animal brains in a suitcase through customs. The Human Advantage is an engaging and original look at how we became remarkable without ever being special.




The Brain-Targeted Teaching Model for 21st-Century Schools


Book Description

Compatible with other professional development programs, this model shows how to apply relevant research from educational and cognitive neuroscience to classroom settings through a pedagogical framework. The model's six components are: 1) Establish the emotional connection to learning; 2) Develop the physical learning environment; 3) Design the learning experience; 4) Teach for the mastery of content, skills, and concepts; 5) Teach for the extension and application of knowledge; 6) Evaluate learning. --Book cover.




The Human Nervous System


Book Description

The previous two editions of the Human Nervous System have been the standard reference for the anatomy of the central and peripheral nervous system of the human. The work has attracted nearly 2,000 citations, demonstrating that it has a major influence in the field of neuroscience. The 3e is a complete and updated revision, with new chapters covering genes and anatomy, gene expression studies, and glia cells. The book continues to be an excellent companion to the Atlas of the Human Brain, and a common nomenclature throughout the book is enforced. Physiological data, functional concepts, and correlates to the neuroanatomy of the major model systems (rat and mouse) as well as brain function round out the new edition. - Adopts standard nomenclature following the new scheme by Paxinos, Watson, and Puelles and aligned with the Mai et al. Atlas of the Human Brain (new edition in 2007) - Full color throughout with many new and significantly enhanced illustrations - Provides essential reference information for users in conjunction with brain atlases for the identification of brain structures, the connectivity between different areas, and to evaluate data collected in anatomical, physiological, pharmacological, behavioral, and imaging studies