Brain Glycogen Metabolism


Book Description

This book aims to provide a state-of-the-art summary of what is currently known about brain glycogen metabolism, detailing the recent advances in our understanding of why glycogen is so critical for normal brain function. The role of glycogen in cellular neurophysiology remains largely unclear and its specific contribution to the energy demand of brain cells is still elusive.Glycogen is the sole cerebral glucose reserve and is emerging as a fundamental component of brain energy metabolism. Pharmacological or genetic manipulation of glycogen metabolism in the brain impairs memory formation and increases susceptibility to epileptic seizures and cortical spreading depression. Glycogen is also directly implicated in abnormal neuronal excitability and mental retardation that characterize brain disorders like Lafora disease and Pompe disease.







Brain Energy Metabolism


Book Description

Brain Energy Metabolism addresses its challenging subject by presenting diverse technologies allowing for the investigation of brain energy metabolism on different levels of complexity. Model systems are discussed, starting from the reductionist approach like primary cell cultures which allow assessing of the properties and functions of a single brain cell type with many different types of analysis, however, at the expense of neglecting the interaction between cell types in the brain. On the other end, analysis in animals and humans in vivo is discussed, maintaining the full complexity of the tissue and the organism but making high demands on the methods of analysis. Written for the popular Neuromethods series, chapters include the kind of detailed description and key implementation advice that aims to support reproducible results in the lab. Meticulous and authoritative, Brain Energy Metabolism provides an ideal guide for researchers interested in brain energy metabolism with the hope of stimulating more research in this exciting and very important field.




Glycogen and its Related Enzymes of Metabolism in the Central Nervous System


Book Description

The glycogen content of normal mammalian CNS is small when compared with that of some other mammalian tissues such as liver and muscle. Nevertheless, this glycogen content normally comprises at least one quarter of its total reserve of energy, the rest being adenosine triphosphate (ATP), phosphocreatine and glucose. Since this glycogen undergoes a turnover 50-100 times that of brain lipids, and exceeds by several orders of magnitude that of liver glycogen, it most likely plays a dynamic role in the metabolism of brain, Gatfield et al. (1966), Prasannan and Subrahmanyam (1968b), Brunner et al. (1971), Edwards and Rogers (1972) and Watanabe and Passonneau (1973). Glycogen also has an unequal distribution in the normal mammalian brain and spinal cord (Shimizu and Kumamoto, 1952; Shimizu and Okada, 1957; Friede, 1966; Shanthaveerappa et al., 1966; Ibrahim etal., 1970a), and it is possible that areas showing more glycogen "are inherently vulnerable and that their extra glycogen is an added protective mechanism" (Ibrahim, 1972). However, this is probably not the only explanation for the unequal distribution of glycogen since it is suggested for instance that neuronal glycogen may be normally impli cated in the process of synaptic transmission (Shanthaveerappa et al., 1966; Drummond and Bellward, 1970) and that retinal glycogen plays a role in the normal dark-light adaptation sequence (Shimizu and Maeda, 1953). Also, a wide variety of physiological, pathological and experimental conditions leads to a common response in the CNS, namely, accumulation of glycogen







The Heterogeneity of Cancer Metabolism


Book Description

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.







Medical Biochemistry


Book Description

This text presents the fundamentals of biochemistry and related topics for all those pursuing medical or other health-related fields such as clinical chemistry, medical technology, or pharmacology.




Astroglia and Brain Metabolism


Book Description

The present outline of astrocytic metabolic pathways involved in glucose and amino acid metabolism provides detailed information about the enzymatic pathways involved, as well as a description of the basic properties of the enzymes including regulatory mechanisms. Hence, the glycolytic pathway and glycogen metabolism are outlined, followed by a detailed account of pyruvate oxidation and its role as a substrate for the tricarboxylic acid (TCA) cycle. Moreover, a detailed description of the main enzymes involved in glutamate metabolism is provided and the role of the glutamate-glutamine cycle is explained. Since this text is primarily covering astrocytic metabolism, an emphasis has been placed on a discussion of the significance of the astrocyte specific enzymes pyruvate carboxylase and glutamine synthetase, which enable these cells to perform a net synthesis of glutamine, the precursor for synthesis of glutamate and γ-aminobutyrate (GABA), the main neurotransmitters of the brain. With this, we have underlined the fundamental importance of astrocytic metabolism for neuronal function with a particular emphasis on the fact that, without continuous support from the astrocytic partners in synaptic function, glutamatergic and GABAergic neurotransmission would not be possible. It is thought provoking that these neurotransmission processes, which account for the vast majority of synaptic activity in the brain, have been made totally dependent on astrocytic metabolic support, particularly with regard to replenishment of the respective neurotransmitters.




Carbohydrate Metabolism in Health and Disease


Book Description

This book is a printed edition of the Special Issue "Carbohydrate Metabolism in Health and Disease" that was published in Nutrients