Brain Glycogen Metabolism


Book Description

This book aims to provide a state-of-the-art summary of what is currently known about brain glycogen metabolism, detailing the recent advances in our understanding of why glycogen is so critical for normal brain function. The role of glycogen in cellular neurophysiology remains largely unclear and its specific contribution to the energy demand of brain cells is still elusive.Glycogen is the sole cerebral glucose reserve and is emerging as a fundamental component of brain energy metabolism. Pharmacological or genetic manipulation of glycogen metabolism in the brain impairs memory formation and increases susceptibility to epileptic seizures and cortical spreading depression. Glycogen is also directly implicated in abnormal neuronal excitability and mental retardation that characterize brain disorders like Lafora disease and Pompe disease.







Hypoglycemia in Diabetes


Book Description

Intended for diabetes researchers and medical professionals who work closely with patients with diabetes, this newly updated and expanded edition provides new perspectives and direct insight into the causes and consequences of this serious medical condition from one of the foremost experts in the field. Using the latest scientific and medical developments and trends, readers will learn how to identify, prevent, and treat this challenging phenomenon within the parameters of the diabetes care regimen.







Glucose Sensing


Book Description

An essential reference for any laboratory working in the analytical fluorescence glucose sensing field. The increasing importance of these techniques is typified in one emerging area by developing non-invasive and continuous approaches for physiological glucose monitoring. This volume incorporates analytical fluorescence-based glucose sensing reviews, specialized enough to be attractive to professional researchers, yet appealing to a wider audience of scientists in related disciplines of fluorescence.




Comparative Physiology of Fasting, Starvation, and Food Limitation


Book Description

All animals face the possibility of food limitation and ultimately starvation-induced mortality. This book summarizes state of the art of starvation biology from the ecological causes of food limitation to the physiological and evolutionary consequences of prolonged fasting. It is written for an audience with an understanding of general principles in animal physiology, yet offers a level of analysis and interpretation that will engage seasoned scientists. Each chapter is written by active researchers in the field of comparative physiology and draws on the primary literature of starvation both in nature and the laboratory. The chapters are organized among broad taxonomic categories, such as protists, arthropods, fishes, reptiles, birds, and flying, aquatic, and terrestrial mammals including humans; particularly well-studied animal models, e.g. endotherms are further organized by experimental approaches, such as analyses of blood metabolites, stable isotopes, thermobiology, and modeling of body composition.




Principles of Diabetes Mellitus


Book Description

Diabetes mellitus is a very common disease which affects approximately 150,000,000 worldwide. With its prevalence rising rapidly, diabetes continues to mystify and fascinate both practitioners and investigators by its elusive causes and multitude of This textbook is written for endocrinologists, specialists in other disciplines who treat diabetic patients, primary care physicians, housestaff and medical students. It covers, in a concise and clear manner, all aspects of the disease, from its pathogenesis on the molecular and cellular levels to its most modern therapy.




The Heterogeneity of Cancer Metabolism


Book Description

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.




Brain Energy Metabolism


Book Description

Brain Energy Metabolism addresses its challenging subject by presenting diverse technologies allowing for the investigation of brain energy metabolism on different levels of complexity. Model systems are discussed, starting from the reductionist approach like primary cell cultures which allow assessing of the properties and functions of a single brain cell type with many different types of analysis, however, at the expense of neglecting the interaction between cell types in the brain. On the other end, analysis in animals and humans in vivo is discussed, maintaining the full complexity of the tissue and the organism but making high demands on the methods of analysis. Written for the popular Neuromethods series, chapters include the kind of detailed description and key implementation advice that aims to support reproducible results in the lab. Meticulous and authoritative, Brain Energy Metabolism provides an ideal guide for researchers interested in brain energy metabolism with the hope of stimulating more research in this exciting and very important field.