Discovering the Brain


Book Description

The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."




How People Learn


Book Description

First released in the Spring of 1999, How People Learn has been expanded to show how the theories and insights from the original book can translate into actions and practice, now making a real connection between classroom activities and learning behavior. This edition includes far-reaching suggestions for research that could increase the impact that classroom teaching has on actual learning. Like the original edition, this book offers exciting new research about the mind and the brain that provides answers to a number of compelling questions. When do infants begin to learn? How do experts learn and how is this different from non-experts? What can teachers and schools do-with curricula, classroom settings, and teaching methodsâ€"to help children learn most effectively? New evidence from many branches of science has significantly added to our understanding of what it means to know, from the neural processes that occur during learning to the influence of culture on what people see and absorb. How People Learn examines these findings and their implications for what we teach, how we teach it, and how we assess what our children learn. The book uses exemplary teaching to illustrate how approaches based on what we now know result in in-depth learning. This new knowledge calls into question concepts and practices firmly entrenched in our current education system. Topics include: How learning actually changes the physical structure of the brain. How existing knowledge affects what people notice and how they learn. What the thought processes of experts tell us about how to teach. The amazing learning potential of infants. The relationship of classroom learning and everyday settings of community and workplace. Learning needs and opportunities for teachers. A realistic look at the role of technology in education.




Neural Plasticity and Memory


Book Description

A comprehensive, multidisciplinary review, Neural Plasticity and Memory: From Genes to Brain Imaging provides an in-depth, up-to-date analysis of the study of the neurobiology of memory. Leading specialists share their scientific experience in the field, covering a wide range of topics where molecular, genetic, behavioral, and brain imaging techniq




The Cambridge Handbook of Cognitive Science


Book Description

An authoritative, up-to-date survey of the state of the art in cognitive science, written for non-specialists.




Neurobiology of Learning and Memory


Book Description

The first edition of Neurobiology of Learning and Memory was published in 1998 to rave reviews. As before, this second edition will discuss anatomy, development, systems, and models though the organization and content is substantially changed reflecting advances in the field. Including information from both animal and human studies, this book represents an up-to-date review of the most important concepts associated with the basic mechanism that support learning and memory, theoretical developments, use of computational models, and application to real world problems. The emphasis of each chapter will be the presentation of cutting-edge research on the topic, the development of a theoretical perspective, and providing an outline that will aid a student in understanding the most important concepts presented in the chapter. *New material covers basal ganglia, cerebellum, prefrontal cortex, and fear conditioning*Additional information available on applied issues (i.e., degenerative disease, aging, and enhancement of memory)*Each chapter includes an outline to assist student understanding of challenging concepts*Four-color illustrations throughout




Gateway to Memory


Book Description

This book is for students and researchers who have a specific interest in learning and memory and want to understand how computational models can be integrated into experimental research on the hippocampus and learning. It emphasizes the function of brain structures as they give rise to behavior, rather than the molecular or neuronal details. It also emphasizes the process of modeling, rather than the mathematical details of the models themselves. The book is divided into two parts. The first part provides a tutorial introduction to topics in neuroscience, the psychology of learning and memory, and the theory of neural network models. The second part, the core of the book, reviews computational models of how the hippocampus cooperates with other brain structures -- including the entorhinal cortex, basal forebrain, cerebellum, and primary sensory and motor cortices -- to support learning and memory in both animals and humans. The book assumes no prior knowledge of computational modeling or mathematics. For those who wish to delve more deeply into the formal details of the models, there are optional "mathboxes" and appendices. The book also includes extensive references and suggestions for further readings.




Conn's Translational Neuroscience


Book Description

Conn's Translational Neuroscience provides a comprehensive overview reflecting the depth and breadth of the field of translational neuroscience, with input from a distinguished panel of basic and clinical investigators. Progress has continued in understanding the brain at the molecular, anatomic, and physiological levels in the years following the 'Decade of the Brain,' with the results providing insight into the underlying basis of many neurological disease processes. This book alternates scientific and clinical chapters that explain the basic science underlying neurological processes and then relates that science to the understanding of neurological disorders and their treatment. Chapters cover disorders of the spinal cord, neuronal migration, the autonomic nervous system, the limbic system, ocular motility, and the basal ganglia, as well as demyelinating disorders, stroke, dementia and abnormalities of cognition, congenital chromosomal and genetic abnormalities, Parkinson's disease, nerve trauma, peripheral neuropathy, aphasias, sleep disorders, and myasthenia gravis. In addition to concise summaries of the most recent biochemical, physiological, anatomical, and behavioral advances, the chapters summarize current findings on neuronal gene expression and protein synthesis at the molecular level. Authoritative and comprehensive, Conn's Translational Neuroscience provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, as well as a clear demonstration of their emerging diagnostic and therapeutic importance. - Provides a fully up-to-date and readily accessible guide to brain functions at the cellular and molecular level, while also clearly demonstrating their emerging diagnostic and therapeutic importance - Features contributions from leading global basic and clinical investigators in the field - Provides a great resource for researchers and practitioners interested in the basic science underlying neurological processes - Relates and translates the current science to the understanding of neurological disorders and their treatment




From Neurons to Neighborhoods


Book Description

How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.




Learning and Memory


Book Description

Brain research is much in the news, but what is its relevance in the classroom? Are there ways to take what brain researchers are discovering about learning and memory and apply it to the situations that educators face every day? Practicing teacher and author Marilee Sprenger tells how to do just that in this book. Sprenger has spent years studying neurological research and training other educators in brain‐compatible teaching methods. This background, combined with her long career as a classroom teacher, has given her priceless knowledge of what works in a multitude of classroom situations. Current brain research is as amazing as it can be confusing. This book discusses in plain terms the structure, function, and development of the human brain. The author describes the five "memory lanes"--semantic, episodic, procedural, automatic, and emotional--and tells how they function in learning and memory. She offers dozens of practical suggestions for teaching and assessing in brain-compatible ways. Bridging the gap between theory and practice, the book offers valid, usable, "What you can do on Monday" ideas to incorporate into the classroom. This is an approach to brain research that educators at all levels can apply in their daily work. Note: This product listing is for the Adobe Acrobat (PDF) version of the book.




Memory, Learning, and Higher Function


Book Description

The basis of learning appears to be a network of interconnected adaptive elements (such as those found in the brain) by means of which transforms between inputs and outputs are performed. By adaptive I mean that the element can change in some systematic manner and in so doing alter the transform between input and output. In living systems, transmission within the neural network involves cpded nerve impulses and other physical chemical processes that form reflections of sensory stimuli and incipient motor behavior. The properties of the transmission network become significant determinants of behavior and depend on the mechanisms of neuronal adaptation, the means by which the connectivities between different neurons are modified. Particular paths through the network become labeled with reference to specific inputs and outputs. The network then operates through labeled interconnections linking specific elements within the network and through the mechanisms that underlie each element's adaptation. The adap tive features are crucial to learning and imply some associated, underlying mnemonic process. The labeling is of consequence with regard to the resulting specificities of stimulus reception and motor performance that characterize adaptive behavior. Memory involves time-dependent information processing relying on en coding and retrieval as well as storage itself. In the brain, engrams can be defined as those elemental adaptive changes that take place when learning and memory storage occur. Persistent engrammatic modifications of neuronal structure commonly arise through the same associative mechanisms responsi ble for learned behavior [397, 486, 759, 1020].