Precision Medicine in Oncology


Book Description

A FRESH EXAMINATION OF PRECISION MEDICINE'S INCREASINGLY PROMINENT ROLE IN THE FIELD OF ONCOLOGY Precision medicine takes into account each patient's specific characteristics and requirements to arrive at treatment plans that are optimized towards the best possible outcome. As the field of oncology continues to advance, this tailored approach is becoming more and more prevalent, channelling data on genomics, proteomics, metabolomics and other areas into new and innovative methods of practice. Precision Medicine in Oncology draws together the essential research driving the field forward, providing oncology clinicians and trainees alike with an illuminating overview of the technology and thinking behind the breakthroughs currently being made. Topics covered include: Biologically-guided radiation therapy Informatics for precision medicine Molecular imaging Biomarkers for treatment assessment Big data Nanoplatforms Casting a spotlight on this emerging knowledge base and its impact upon the management of tumors, Precision Medicine in Oncology opens up new possibilities and ways of working – not only for oncologists, but also for molecular biologists, radiologists, medical geneticists, and others.




Personalized Medicine in Oncology


Book Description

Nowhere is the explosion in comprehensive genomic testing more evident than in oncology. Multiple consensus guidelines now recommend molecular testing as the standard of care for most metastatic tumors. To aid in the advancement of this rapidly changing field, we intend this Special Issue of JPM to focus on technical developments in the genomic profiling of cancer, detail promising somatic alterations that either are, or have a high likelihood of being, relevant in the near future, and to address issues related to the pricing and value of these tests.The last few years have seen the cost of molecular testing decrease by orders of magnitude. In 2018, we saw the first “site-agnostic” drug approvals in cancer (for microsatellite unstable cancer (PD-1 inhibitors) and NTRK-fusions (TRK inhibitors)). Research on targetable mutations, determination of genetic “signatures” that can use multiple individual genes/pathways, development of targeted therapy, and insight into the value of new technology remains at the cutting edge of research in this field. We are soliciting papers that present new technologies to assess predictive biomarkers in cancer, original research (pre-clinical or clinical) that demonstrates promise for particular targeted therapies in cancer, and articles that explore the clinical and financial impacts of this paradigmatic shift in cancer diagnostics and treatment.




Toward Precision Medicine


Book Description

Motivated by the explosion of molecular data on humans-particularly data associated with individual patients-and the sense that there are large, as-yet-untapped opportunities to use this data to improve health outcomes, Toward Precision Medicine explores the feasibility and need for "a new taxonomy of human disease based on molecular biology" and develops a potential framework for creating one. The book says that a new data network that integrates emerging research on the molecular makeup of diseases with clinical data on individual patients could drive the development of a more accurate classification of diseases and ultimately enhance diagnosis and treatment. The "new taxonomy" that emerges would define diseases by their underlying molecular causes and other factors in addition to their traditional physical signs and symptoms. The book adds that the new data network could also improve biomedical research by enabling scientists to access patients' information during treatment while still protecting their rights. This would allow the marriage of molecular research and clinical data at the point of care, as opposed to research information continuing to reside primarily in academia. Toward Precision Medicine notes that moving toward individualized medicine requires that researchers and health care providers have access to very large sets of health- and disease-related data linked to individual patients. These data are also critical for developing the information commons, the knowledge network of disease, and ultimately the new taxonomy.




Advanced Computational Methods for Oncological Image Analysis


Book Description

Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians' unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations-such as segmentation, co-registration, classification, and dimensionality reduction-and multi-omics data integration.




Computer Vision -- ECCV 2010


Book Description

The six-volume set comprising LNCS volumes 6311 until 6313 constitutes the refereed proceedings of the 11th European Conference on Computer Vision, ECCV 2010, held in Heraklion, Crete, Greece, in September 2010. The 325 revised papers presented were carefully reviewed and selected from 1174 submissions. The papers are organized in topical sections on object and scene recognition; segmentation and grouping; face, gesture, biometrics; motion and tracking; statistical models and visual learning; matching, registration, alignment; computational imaging; multi-view geometry; image features; video and event characterization; shape representation and recognition; stereo; reflectance, illumination, color; medical image analysis.




Cancer Theranostics


Book Description

Aiding researchers seeking to eliminate multi-step procedures, reduce delays in treatment and ease patient care, Cancer Theranostics reviews, assesses, and makes pertinent clinical recommendations on the integration of comprehensive in vitro diagnostics, in vivo molecular imaging, and individualized treatments towards the personalization of cancer treatment. Cancer Theranostics describes the identification of novel biomarkers to advance molecular diagnostics of cancer. The book encompasses new molecular imaging probes and techniques for early detection of cancer, and describes molecular imaging-guided cancer therapy. Discussion also includes nanoplatforms incorporating both cancer imaging and therapeutic components, as well as clinical translation and future perspectives. Supports elimination of multi-step approaches and reduces delays in treatments through combinatorial diagnosis and therapy Fully assesses cancer theranostics across the emergent field, with discussion of biomarkers, molecular imaging, imaging guided therapy, nanotechnology, and personalized medicine Content bridges laboratory, clinic, and biotechnology industries to advance biomedical science and improve patient management




Precision Medicine and Artificial Intelligence


Book Description

Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions Provides background, milestone and examples of precision medicine Outlines the paradigm shift towards precision medicine driven by value-based systems Discusses future applications of precision medicine research using AI Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine




Biomedical Data Mining for Information Retrieval


Book Description

BIOMEDICAL DATA MINING FOR INFORMATION RETRIEVAL This book not only emphasizes traditional computational techniques, but discusses data mining, biomedical image processing, information retrieval with broad coverage of basic scientific applications. Biomedical Data Mining for Information Retrieval comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and health informatics is an emerging field of research at the intersection of information science, computer science, and healthcare and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient’s data, electronic health records (EHRs) and lifestyle. Previously, it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical image mining, a novel research area, due to the vast amount of available biomedical images, increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients’ biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions relating to healthcare. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients. Audience Researchers in various fields including computer science, medical informatics, healthcare IOT, artificial intelligence, machine learning, image processing, clinical big data analytics.




Targeted Radionuclide Therapy


Book Description

Radioimmunotherapy, also known as systemic targeted radiation therapy, uses antibodies, antibody fragments, or compounds as carriers to guide radiation to the targets. It is a topic rapidly increasing in importance and success in treatment of cancer patients. This book represents a comprehensive amalgamation of the radiation physics, chemistry, radiobiology, tumor models, and clinical data for targeted radionuclide therapy. It outlines the current challenges and provides a glimpse at future directions. With significant advances in cell biology and molecular engineering, many targeting constructs are now available that will safely deliver these highly cytotoxic radionuclides in a targeted fashion. A companion website includes the full text and an image bank.