Strain Measurement in Biomechanics


Book Description

Strain Measurement in Biomechanics will provide a valuable reference source for all research workers in biomechanics and biomaterials as well as orthopaedic manufacturers and orthopaedic surgeons.




Transducer Handbook


Book Description

When selecting or using a particular type of transducer or sensor, there are a number of factors which must be considered. The question is not only for what kind of measurement, but under what physical conditions, constraints of accuracy, and to meet which service requirements, is a transducer needed? This handbook is designed to meet the selection needs of anyone specifying or using transducers with an electrical output. Each transducer is described in an easy-to-use tabular format, giving all of the necessary data including operating principles, applications, range limits, errors, over-range protection, supply voltage requirements, sensitivities, cross sensitivities, temperature ranges and sensitivities and signal conditioning needs. The author has added notes that reflect his broad practical experience. Added to this is an extensive worldwide suppliers directory.




Silos


Book Description

Bringing together the leading European expertise in behaviour and design of silos, this important new book is an essential reference source for all concerned with current problems and developments in silo technology. Silos are used in an enormous range of industries and the handling characteristics of many industrial materials require different approaches for successful, economical installations. For the first time, the many approaches taken by specialists in different fields are brought together in a unified way so that common problems can be addressed. This book is the result of a four-year European project - Concerted Action - Silos - funded under the Brite Euram programme which has involved over 100 expert engineers and researchers from all over Europe, in seven working groups.







Mechanics of Materials Volume 1


Book Description

One of the most important subjects for any student of engineering to master is the behaviour of materials and structures under load. The way in which they react to applied forces, the deflections resulting and the stresses and strains set up in the bodies concerned are all vital considerations when designing a mechanical component such that it will not fail under predicted load during its service lifetime.All the essential elements of a treatment of these topics are contained within this course of study, starting with an introduction to the concepts of stress and strain, shear force and bending moments and moving on to the examination of bending, shear and torsion in elements such as beams, cylinders, shells and springs. A simple treatment of complex stress and complex strain leads to a study of the theories of elastic failure and an introduction to the experimental methods of stress and strain analysis.More advanced topics are dealt with in a companion volume - Mechanics of Materials 2. Each chapter contains a summary of the essential formulae which are developed in the chapter, and a large number of worked examples which progress in level of difficulty as the principles are enlarged upon. In addition, each chapter concludes with an extensive selection of problems for solution by the student, mostly examination questions from professional and academic bodies, which are graded according to difficulty and furnished with answers at the end.* Emphasis on practical learning and applications, rather than theory* Provides the essential formulae for each individual chapter* Contains numerous worked examples and problems




Design Engineer's Sourcebook


Book Description

Design Engineer's Sourcebook provides a practical resource for engineers, product designers, technical managers, students, and others needing a design-oriented reference. This volume covers the mathematics, mechanics, and materials properties needed for analysis and design, with numerous examples. A wide range of mechanical components and mechanisms are then covered, with case studies interspersed to show real engineering practice. Manufacturing is then surveyed, in the context of mechanical design. The book concludes with information on clutches, brakes, transmission and other topics important for vehicle engineering. Tables, figures and charts are included for reference.




Mechanics of Materials 2


Book Description

One of the most important subjects for any student of engineering or materials to master is the behaviour of materials and structures under load. The way in which they react to applied forces, the deflections resulting and the stresses and strains set up in the bodies concerned are all vital considerations when designing a mechanical component such that it will not fail under predicted load during its service lifetime.Building upon the fundamentals established in the introductory volume Mechanics of Materials 1, this book extends the scope of material covered into more complex areas such as unsymmetrical bending, loading and deflection of struts, rings, discs, cylinders plates, diaphragms and thin walled sections. There is a new treatment of the Finite Element Method of analysis, and more advanced topics such as contact and residual stresses, stress concentrations, fatigue, creep and fracture are also covered. Each chapter contains a summary of the essential formulae which are developed in the chapter, and a large number of worked examples which progress in level of difficulty as the principles are enlarged upon. In addition, each chapter concludes with an extensive selection of problems for solution by the student, mostly examination questions from professional and academic bodies, which are graded according to difficulty and furnished with answers at the end.




Experimental Mechanics of Solids


Book Description

Experimental solid mechanics is the study of materials to determine their physical properties. This study might include performing a stress analysis or measuring the extent of displacement, shape, strain and stress which a material suffers under controlled conditions. In the last few years there have been remarkable developments in experimental techniques that measure shape, displacement and strains and these sorts of experiments are increasingly conducted using computational techniques. Experimental Mechanics of Solids is a comprehensive introduction to the topics, technologies and methods of experimental mechanics of solids. It begins by establishing the fundamentals of continuum mechanics, explaining key areas such as the equations used, stresses and strains, and two and three dimensional problems. Having laid down the foundations of the topic, the book then moves on to look at specific techniques and technologies with emphasis on the most recent developments such as optics and image processing. Most of the current computational methods, as well as practical ones, are included to ensure that the book provides information essential to the reader in practical or research applications. Key features: Presents widely used and accepted methodologies that are based on research and development work of the lead author Systematically works through the topics and theories of experimental mechanics including detailed treatments of the Moire, Speckle and holographic optical methods Includes illustrations and diagrams to illuminate the topic clearly for the reader Provides a comprehensive introduction to the topic, and also acts as a quick reference guide This comprehensive book forms an invaluable resource for graduate students and is also a point of reference for researchers and practitioners in structural and materials engineering.