Building and Maintaining a Data Warehouse


Book Description

As it is with building a house, most of the work necessary to build a data warehouse is neither visible nor obvious when looking at the completed product. While it may be easy to plan for a data warehouse that incorporates all the right concepts, taking the steps needed to create a warehouse that is as functional and user-friendly as it is theoreti




Building and Maintaining a Data Warehouse


Book Description

As it is with building a house, most of the work necessary to build a data warehouse is neither visible nor obvious when looking at the completed product. While it may be easy to plan for a data warehouse that incorporates all the right concepts, taking the steps needed to create a warehouse that is as functional and user-friendly as it is theoreti




Building a Data Warehouse


Book Description

Here is the ideal field guide for data warehousing implementation. This book first teaches you how to build a data warehouse, including defining the architecture, understanding the methodology, gathering the requirements, designing the data models, and creating the databases. Coverage then explains how to populate the data warehouse and explores how to present data to users using reports and multidimensional databases and how to use the data in the data warehouse for business intelligence, customer relationship management, and other purposes. It also details testing and how to administer data warehouse operation.




The Data Warehouse Toolkit


Book Description

Updated new edition of Ralph Kimball's groundbreaking book on dimensional modeling for data warehousing and business intelligence! The first edition of Ralph Kimball's The Data Warehouse Toolkit introduced the industry to dimensional modeling, and now his books are considered the most authoritative guides in this space. This new third edition is a complete library of updated dimensional modeling techniques, the most comprehensive collection ever. It covers new and enhanced star schema dimensional modeling patterns, adds two new chapters on ETL techniques, includes new and expanded business matrices for 12 case studies, and more. Authored by Ralph Kimball and Margy Ross, known worldwide as educators, consultants, and influential thought leaders in data warehousing and business intelligence Begins with fundamental design recommendations and progresses through increasingly complex scenarios Presents unique modeling techniques for business applications such as inventory management, procurement, invoicing, accounting, customer relationship management, big data analytics, and more Draws real-world case studies from a variety of industries, including retail sales, financial services, telecommunications, education, health care, insurance, e-commerce, and more Design dimensional databases that are easy to understand and provide fast query response with The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition.




Building the Data Warehouse


Book Description

The data warehousing bible updated for the new millennium Updated and expanded to reflect the many technological advances occurring since the previous edition, this latest edition of the data warehousing "bible" provides a comprehensive introduction to building data marts, operational data stores, the Corporate Information Factory, exploration warehouses, and Web-enabled warehouses. Written by the father of the data warehouse concept, the book also reviews the unique requirements for supporting e-business and explores various ways in which the traditional data warehouse can be integrated with new technologies to provide enhanced customer service, sales, and support-both online and offline-including near-line data storage techniques.




Data Warehousing Fundamentals


Book Description

Geared to IT professionals eager to get into the all-importantfield of data warehousing, this book explores all topics needed bythose who design and implement data warehouses. Readers will learnabout planning requirements, architecture, infrastructure, datapreparation, information delivery, implementation, and maintenance.They'll also find a wealth of industry examples garnered from theauthor's 25 years of experience in designing and implementingdatabases and data warehouse applications for majorcorporations. Market: IT Professionals, Consultants.




Decision Support in the Data Warehouse


Book Description

Most data warehousing books provide little information about the applications or tools that deliver the business value that the data warehouse provides. The title includes a comprehensive survey of tools and technologies available today. This book explores decision support in a data warehousing environment. Focus is on building front-end decision support systems.




The Data Warehouse ETL Toolkit


Book Description

Cowritten by Ralph Kimball, the world's leading data warehousing authority, whose previous books have sold more than 150,000 copies Delivers real-world solutions for the most time- and labor-intensive portion of data warehousing-data staging, or the extract, transform, load (ETL) process Delineates best practices for extracting data from scattered sources, removing redundant and inaccurate data, transforming the remaining data into correctly formatted data structures, and then loading the end product into the data warehouse Offers proven time-saving ETL techniques, comprehensive guidance on building dimensional structures, and crucial advice on ensuring data quality




Data Warehousing


Book Description

PLEASE PROVIDE COURSE INFORMATION PLEASE PROVIDE




Mastering Data Warehouse Design


Book Description

A cutting-edge response to Ralph Kimball's challenge to thedata warehouse community that answers some tough questions aboutthe effectiveness of the relational approach to datawarehousing Written by one of the best-known exponents of the Bill Inmonapproach to data warehousing Addresses head-on the tough issues raised by Kimball andexplains how to choose the best modeling technique for solvingcommon data warehouse design problems Weighs the pros and cons of relational vs. dimensional modelingtechniques Focuses on tough modeling problems, including creating andmaintaining keys and modeling calendars, hierarchies, transactions,and data quality