Building Physics - Heat, Air and Moisture


Book Description

Bad experiences with construction quality, the energy crises of 1973 and 1979, complaints about "sick buildings", thermal, acoustical, visual and olfactory discomfort, the need for good air quality, the move towards more sustainability - all these have accelerated the development of a field that, for a long time, was hardly more than an academic exercise: building physics (in English speaking countries sometimes referred to as building science). The discipline embraces domains such as heat and mass transfer, building acoustics, lighting, indoor environmental quality and energy efficiency. In some countries, fire safety is also included. Through the application of physical knowledge and its combination with information coming from other disciplines, the field helps to understand the physical phenomena governing building parts, building envelope, whole buildings and built environment performance, although for the last the wording "urban physics" is used. Today, building physics has become a key player on the road to a performance based building design. The book deals with the description, analysis and modeling of heat, air and moisture transport in building assemblies and whole buildings with main emphasis on the building engineering applications, including examples. The physical transport processes determine the performance of the building envelope and may influence the serviceability of the structure and the whole building. Compared to the second edition, in this third edition the text has partially been revised and extended.




Building Physics - Heat, Air and Moisture


Book Description

Bad experiences with construction quality, the energy crises of 1973 and 1979, complaints about "sick buildings", thermal, acoustical, visual and olfactory discomfort, the need for good air quality, the move towards more sustainability - all these have accelerated the development of a field that, for a long time, was hardly more than an academic exercise: building physics (in English speaking countries sometimes referred to as building science). The discipline embraces domains such as heat and mass transfer, building acoustics, lighting, indoor environmental quality and energy efficiency. In some countries, fire safety is also included. Through the application of physical knowledge and its combination with information coming from other disciplines, the field helps to understand the physical phenomena governing building parts, building envelope, whole buildings and built environment performance, although for the last the wording "urban physics" is used. Today, building physics has become a key player on the road to a performance based building design. The book deals with the description, analysis and modeling of heat, air and moisture transport in building assemblies and whole buildings with main emphasis on the building engineering applications, including examples. The physical transport processes determine the performance of the building envelope and may influence the serviceability of the structure and the whole building. Compared to the second edition, in this third edition the text has partially been revised and extended.




Applied Building Physics


Book Description

Die Energiekrise der 1970er Jahre, häufig auftretende Feuchteprobleme, Klagen über das Sick-Building-Syndrom und mangelnden Komfort hinsichtlich Raumklima und Behaglichkeit und nicht zuletzt das Bemühen um Nachhaltigkeit haben die Bauphysik zu einem Innovationsmotor auf dem Gebäudesektor gemacht. Dabei war die gesellschaftliche Forderung nach Energieeinsparung in Gebäuden ohne Gebrauchseinschränkungen der Auslöser für die ganzheitliche Planung. Wie alle Ingenieurwissenschaften ist auch die Bauphysik anwendungsorientiert, weshalb sich nach einem ersten Buch über die Grundlagen das vorliegende zweite Buch mit den Hintergründen der Gebrauchstauglichkeit und den Anforderungen an Energieeffizienz in Gebäuden befasst. Außenklimabedingungen und Raumklimaberechnungen werden diskutiert, Energieverluste und -gewinne werden für Gebäude und separat für die Gebäudehülle untersucht. Die wichtigen physikalischen Eigenschaften für den gekoppelten Wärme- und Feuchtetransport durch Baukonstruktionen werden für zahlreiche Materialien aufgeführt. Für das Buch stützt sich der Autor auf seine Erfahrungen aus 35 Jahren Lehre der Bauphysik für Architekten und Bauingenieure und 40 Jahre Tätigkeit in der Forschung und als Beratender Ingenieur.




Moisture Control Handbook


Book Description

In the climate-controlled buildings of today, moisture problemsaffect not only the useable life expectancy of the structure, butthe comfort and health of the occupants. This reference is thefirst to apply up-to-date moisture control and treatment techniquesin a problem/solution format. Opening with an introductoryexplanation of the nature and causes of mold, mildew, andcondensation, the book gives specific advice on heated, cooled, andcombination environments, plus a short course in the dynamics ofmoisture movement within buildings. Other invaluable coverageincludes: * clear, detailed recommended practices for all United Statesclimates * practices for cooling as well as heating climates (often, heatingclimate solutions are applied in cooling climates, where problemsand solutions are completely different) * an overall, systematic view of moisture problems--including howmechanical systems and occupant lifestyles can create and alsoresolve moisture problems * actual case studies of buildings with moisture problems thatillustrate the principles and practices presented in the book This detailed, no-nonsense exploration of moisture cause andeffect--as well as its protection and remediation--will expandreaders' knowledge on this crucial subject. Moisture ControlHandbook will be welcomed by building contractors, architects,mechanical engineers, building science researchers, buildingproduct manufacturers, homeowners, and small commercial buildingowners.




How Buildings Work


Book Description

An understanding of building physics is fundamental for the design and construction of safe, functional, energy efficient buildings. Without it, occupants’ health and comfort is compromised, energy bills become unmanageable, or the building fabric itself can fail. But it’s not just about providing a heating source or stopping the cold coming in; at the heart of building physics is a fine balancing act: how much ventilation will be required for the occupants and how can that be provided without compromising the thermal performance? How will the layout and fenestration affect light levels and cooling demand? How Buildings Work provides construction professionals with a clear understanding of the basic mechanisms of physics and how they affect the performance and operation of buildings. Heat, air, moisture, sound, light and radioactivity are explained in turn, yet all the while reminding the reader that none of these phenomena can be considered in isolation when designing a building. Whether you’re a student trying to get your head round the basics, or a seasoned practitioner looking for a quick refresher course.




Materials for Energy Efficiency and Thermal Comfort in Buildings


Book Description

Almost half of the total energy produced in the developed world is inefficiently used to heat, cool, ventilate and control humidity in buildings, to meet the increasingly high thermal comfort levels demanded by occupants. The utilisation of advanced materials and passive technologies in buildings would substantially reduce the energy demand and improve the environmental impact and carbon footprint of building stock worldwide.Materials for energy efficiency and thermal comfort in buildings critically reviews the advanced building materials applicable for improving the built environment. Part one reviews both fundamental building physics and occupant comfort in buildings, from heat and mass transport, hygrothermal behaviour, and ventilation, on to thermal comfort and health and safety requirements.Part two details the development of advanced materials and sustainable technologies for application in buildings, beginning with a review of lifecycle assessment and environmental profiling of materials. The section moves on to review thermal insulation materials, materials for heat and moisture control, and heat energy storage and passive cooling technologies. Part two concludes with coverage of modern methods of construction, roofing design and technology, and benchmarking of façades for optimised building thermal performance.Finally, Part three reviews the application of advanced materials, design and technologies in a range of existing and new building types, including domestic, commercial and high-performance buildings, and buildings in hot and tropical climates.This book is of particular use to, mechanical, electrical and HVAC engineers, architects and low-energy building practitioners worldwide, as well as to academics and researchers in the fields of building physics, civil and building engineering, and materials science. - Explores improving energy efficiency and thermal comfort through material selection and sustainable technologies - Documents the development of advanced materials and sustainable technologies for applications in building design and construction - Examines fundamental building physics and occupant comfort in buildings featuring heat and mass transport, hygrothermal behaviour and ventilation




Fundamentals of Building Performance Simulation


Book Description

Fundamentals of Building Performance Simulation pares the theory and practice of a multi-disciplinary field to the essentials for classroom learning and real-world applications. Authored by a veteran educator and researcher, this textbook equips graduate students and emerging and established professionals in engineering and architecture to predict and optimize buildings’ energy use. It employs an innovative pedagogical approach, introducing new concepts and skills through previously mastered ones and deepening understanding of familiar themes by means of new material. Covering topics from indoor airflow to the effects of the weather, the book’s 19 chapters empower learners to: Understand the models and assumptions underlying popular BPS tools Compare models, simulations, and modelling tools and make appropriate selections Recognize the effects of modelling choices and input data on simulation predictions And more. Each subject is introduced without reference to particular modelling tools, while practice problems at the end of each chapter provide hands-on experience with the tools of the reader’s choice. Curated reading lists orient beginners in a vast, cross-disciplinary literature, and the critical thinking skills stressed throughout prepare them to make contributions of their own. Fundamentals of Building Performance Simulation provides a much-needed resource for new and aspiring members of the building science community.




Damp Indoor Spaces and Health


Book Description

Almost all homes, apartments, and commercial buildings will experience leaks, flooding, or other forms of excessive indoor dampness at some point. Not only is excessive dampness a health problem by itself, it also contributes to several other potentially problematic types of situations. Molds and other microbial agents favor damp indoor environments, and excess moisture may initiate the release of chemical emissions from damaged building materials and furnishings. This new book from the Institute of Medicine examines the health impact of exposures resulting from damp indoor environments and offers recommendations for public health interventions. Damp Indoor Spaces and Health covers a broad range of topics. The book not only examines the relationship between damp or moldy indoor environments and adverse health outcomes but also discusses how and where buildings get wet, how dampness influences microbial growth and chemical emissions, ways to prevent and remediate dampness, and elements of a public health response to the issues. A comprehensive literature review finds sufficient evidence of an association between damp indoor environments and some upper respiratory tract symptoms, coughing, wheezing, and asthma symptoms in sensitized persons. This important book will be of interest to a wide-ranging audience of science, health, engineering, and building professionals, government officials, and members of the public.




Green Building Trends


Book Description

The “green building revolution” is a worldwide movement for energy-efficient, environmentally aware architecture and design. Europe has been in the forefront of green building technology, and Green Building Trends: Europe provides an indispensable overview of these cutting edge ideas and applications. In order to write this book, well-known U.S. green building expert Jerry Yudelson interviewed a number of Europe’s leading architects and engineers and visited many exemplary projects. With the help of copious photographs and illustrations, Yudelson describes some of the leading contemporary green buildings in Europe, including the new Lufthansa headquarters in Frankfurt, the Norddeutsche Landesbank in Hannover, a new school at University College London, the Beaufort Court Zero-Emissions building, the Merck Serono headquarters in Geneva, and a zero-net-energy, all-glass house in Stuttgart. In clear, jargon-free prose, Yudelson provides profiles of progress in the journey towards sustainability, describes the current regulatory and business climates, and predicts what the near future may bring. He also provides a primer on new technologies, systems, and regulatory approaches in Western Europe that can be adopted in North America, including building-integrated solar technologies, radiant heating and cooling systems, dynamic façades that provide natural ventilation, innovative methods for combining climate control and water features in larger buildings, zero-netenergy homes built like Thermos bottles, and strict government timetables for achieving zero-carbon buildings. Green Building Trends: Europe is an essential resource for anyone interested in the latest developments in this rapidly growing field.




Principles of Environmental Physics


Book Description

Thoroughly revised and up-dated edition of a highly successful textbook.