C*-algebras and Elliptic Theory II


Book Description

This book consists of a collection of original, refereed research and expository articles on elliptic aspects of geometric analysis on manifolds, including singular, foliated and non-commutative spaces. The topics covered include the index of operators, torsion invariants, K-theory of operator algebras and L2-invariants. There are contributions from leading specialists, and the book maintains a reasonable balance between research, expository and mixed papers.




Analysis, Geometry and Topology of Elliptic Operators


Book Description

Modern theory of elliptic operators, or simply elliptic theory, has been shaped by the Atiyah-Singer Index Theorem created 40 years ago. Reviewing elliptic theory over a broad range, 32 leading scientists from 14 different countries present recent developments in topology; heat kernel techniques; spectral invariants and cutting and pasting; noncommutative geometry; and theoretical particle, string and membrane physics, and Hamiltonian dynamics. The first of its kind, this volume is ideally suited to graduate students and researchers interested in careful expositions of newly-evolved achievements and perspectives in elliptic theory. The contributions are based on lectures presented at a workshop acknowledging Krzysztof P Wojciechowski''s work in the theory of elliptic operators. Sample Chapter(s). Contents (42 KB). Contents: On the Mathematical Work of Krzysztof P Wojciechowski: Selected Aspects of the Mathematical Work of Krzysztof P Wojciechowski (M Lesch); Gluing Formulae of Spectral Invariants and Cauchy Data Spaces (J Park); Topological Theories: The Behavior of the Analytic Index under Nontrivial Embedding (D Bleecker); Critical Points of Polynomials in Three Complex Variables (L I Nicolaescu); Chern-Weil Forms Associated with Superconnections (S Paycha & S Scott); Heat Kernel Calculations and Surgery: Non-Laplace Type Operators on Manifolds with Boundary (I G Avramidi); Eta Invariants for Manifold with Boundary (X Dai); Heat Kernels of the Sub-Laplacian and the Laplacian on Nilpotent Lie Groups (K Furutani); Remarks on Nonlocal Trace Expansion Coefficients (G Grubb); An Anomaly Formula for L 2- Analytic Torsions on Manifolds with Boundary (X Ma & W Zhang); Conformal Anomalies via Canonical Traces (S Paycha & S Rosenberg); Noncommutative Geometry: An Analytic Approach to Spectral Flow in von Neumann Algebras (M-T Benameur et al.); Elliptic Operators on Infinite Graphs (J Dodziuk); A New Kind of Index Theorem (R G Douglas); A Note on Noncommutative Holomorphic and Harmonic Functions on the Unit Disk (S Klimek); Star Products and Central Extensions (J Mickelsson); An Elementary Proof of the Homotopy Equivalence between the Restricted General Linear Group and the Space of Fredholm Operators (T Wurzbacher); Theoretical Particle, String and Membrane Physics, and Hamiltonian Dynamics: T-Duality for Non-Free Circle Actions (U Bunke & T Schick); A New Spectral Cancellation in Quantum Gravity (G Esposito et al.); A Generalized Morse Index Theorem (C Zhu). Readership: Researchers in modern global analysis and particle physics.




Operator Algebras and Applications: Volume 1, Structure Theory; K-theory, Geometry and Topology


Book Description

These volumes form an authoritative statement of the current state of research in Operator Algebras. They consist of papers arising from a year-long symposium held at the University of Warwick. Contributors include many very well-known figures in the field.




Differential Topology and Quantum Field Theory


Book Description

The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool




Elliptic Operators, Topology, and Asymptotic Methods, Second Edition


Book Description

Ten years after publication of the popular first edition of this volume, the index theorem continues to stand as a central result of modern mathematics-one of the most important foci for the interaction of topology, geometry, and analysis. Retaining its concise presentation but offering streamlined analyses and expanded coverage of important examples and applications, Elliptic Operators, Topology, and Asymptotic Methods, Second Edition introduces the ideas surrounding the heat equation proof of the Atiyah-Singer index theorem. The author builds towards proof of the Lefschetz formula and the full index theorem with four chapters of geometry, five chapters of analysis, and four chapters of topology. The topics addressed include Hodge theory, Weyl's theorem on the distribution of the eigenvalues of the Laplacian, the asymptotic expansion for the heat kernel, and the index theorem for Dirac-type operators using Getzler's direct method. As a "dessert," the final two chapters offer discussion of Witten's analytic approach to the Morse inequalities and the L2-index theorem of Atiyah for Galois coverings. The text assumes some background in differential geometry and functional analysis. With the partial differential equation theory developed within the text and the exercises in each chapter, Elliptic Operators, Topology, and Asymptotic Methods becomes the ideal vehicle for self-study or coursework. Mathematicians, researchers, and physicists working with index theory or supersymmetry will find it a concise but wide-ranging introduction to this important and intriguing field.




The Localization Problem in Index Theory of Elliptic Operators


Book Description

The book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of new important problems in index theory. So far, the localization principle has been only scarcely covered in journal papers and not covered at all in monographs. The suggested book is intended to fill the gap. So far, it is the first and only monograph dealing with the topic. Both the general localization principle and its applications to specific problems, existing and new, are covered. The book will be of interest to working mathematicians as well as graduate and postgraduate university students specializing in differential equations and related topics.​




Elliptic Theory and Noncommutative Geometry


Book Description

This comprehensive yet concise book deals with nonlocal elliptic differential operators. These are operators whose coefficients involve shifts generated by diffeomorphisms of the manifold on which the operators are defined. This is the first book featuring a consistent application of methods of noncommutative geometry to the index problem in the theory of nonlocal elliptic operators. To make the book self-contained, the authors have included necessary geometric material.







Operator Algebras and $K$-Theory


Book Description




Elliptic Partial Differential Operators and Symplectic Algebra


Book Description

This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $$A(\mathbf{x},D)=\sum_{0\,\leq\,\left| s\right| \,\leq\,2m}a_{s} (\mathbf{x})D^{s}\text{ for all }\mathbf{x}\in\Omega$$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C^{\infty }$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E}^{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimension $r\geq2$ are arbitrary. We assume that the coefficients $a_{s}\in C^{\infty}(\overline {\Omega})$ are complex-valued, except real for the highest order terms (where $\left| s\right| =2m$) which satisfy the uniform ellipticity condition in $\overline{\Omega}$. In addition, $A(\cdot,D)$ is Lagrange symmetric so that the corresponding linear operator $A$, on its classical domain $D(A):=C_{0}^{\infty}(\Omega)\subset L_{2}(\Omega)$, is symmetric; for example the familiar Laplacian $\Delta$ and the higher order polyharmonic operators $\Delta^{m}$. Through the methods of complex symplectic algebra, which the authors have previously developed for ordinary differential operators, the Stone-von Neumann theory of symmetric linear operators in Hilbert space is reformulated and adapted to the determination of all self-adjoint extensions of $A$ on $D(A)$, by means of an abstract generalization of the Glazman-Krein-Naimark (GKN) Theorem. In particular the authors construct a natural bijective correspondence between the set $\{T\}$ of all such self-adjoint operators on domains $D(T)\supset D(A)$, and the set $\{\mathsf{L}\}$ of all complete Lagrangian subspaces of the boundary complex symplectic space $\mathsf{S}=D(T_{1})\,/\,D(T_{0})$, where $T_{0}$ on $D(T_{0})$ and $T_{1}$ on $D(T_{1})$ are the minimal and maximal operators, respectively, determined by $A$ on $D(A)\subset L_{2}(\Omega)$. In the case of the elliptic partial differential operator $A$, we verify $D(T_{0})=\overset{\text{o}}{W}{}^{2m}(\Omega)$ and provide a novel definition and structural analysis for $D(T_{1})=\overset{A}{W}{}^{2m}(\Omega)$, which extends the GKN-theory from ordinary differential operators to a certain class of elliptic partial differential operators. Thus the boundary complex symplectic space $\mathsf{S}= \overset{A}{W}{}^{2m}(\Omega)\,/\,\overset{\text{o}}{W}{}^{2m}(\Omega)$ effects a classification of all self-adjoint extensions of $A$ on $D(A)$, including those operators that are not specified by differential boundary conditions, but instead by global (i.e. non-local) generalized boundary conditions. The scope of the theory is illustrated by several familiar, and other quite unusual, self-adjoint operators described in special examples. An Appendix is attached to present the basic definitions and concepts of differential topology and functional analysis on differentiable manifolds. In this Appendix care is taken to list and explain all special mathematical terms and symbols - in particular, the notations for Sobolev Hilbert spaces and the appropriate trace theorems. An Acknowledgment and subject Index complete this Memoir.