Protein Kinases and Stress Signaling in Plants


Book Description

A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.




Protein Phosphatases and Stress Management in Plants


Book Description

The regulation of the phosphorylation/dephosphorylation process, resulting in “cellular switches” that monitor normal plant physiology, growth and development, has immense potential in crop systems. With much of the information in the nascent stages, coming largely from Arabidopsis and rice particularly, the use of cell biology, genetic screens, biochemical approaches aided by an omics approach should help unravel the detail functional information available about signaling pathways in plants. The regulation could be exploited to develop crop varieties better equipped to handle changing environments and enhance agricultural productivity. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving phosphatases, one gene family or multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses. Especially abiotic stresses, which are the major cause of crop loss throughout the world without losing crop yield and productivity. This book incorporates the contributions from leading plant biologists in the field of stress-mediated dephosphorylation by phosphatases as an important task to elucidate the aspects of stress signaling by functional genomic approaches.




Ecophysiology and Responses of Plants under Salt Stress


Book Description

This book will shed light on the effect of salt stress on plants development, proteomics, genomics, genetic engineering, and plant adaptations, among other topics. Understanding the molecular basis will be helpful in developing selection strategies for improving salinity tolerance. The book will cover around 25 chapters with contributors from all over the world.




Plant Cold Acclimation


Book Description

Plant Cold Acclimation: Methods and Protocols details many of the methods and protocols commonly used to study plant cold acclimation and freezing tolerance, breeding, genetics, physiology or molecular biology, or any combination of these specialties. Chapters focus on interdisciplinary approaches, experimental methods, and concepts from different areas of science. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Cold Acclimation: Methods and Protocols seeks to help not only new researchers starting in this field, but also those already working in a particular area of cold acclimation and freezing tolerance research who are looking to expand their range of experimental approaches.




Mammalian Transient Receptor Potential (TRP) Cation Channels


Book Description

​In this fast moving field the main goal of this volume is to provide up-to-date information on the molecular and functional properties and pharmacology of mammalian TRP channels. Leading experts in the field describe properties of a single TRP protein/channel or portray more general principles of TRP function and important pathological situations linked to mutations of TRP genes or their altered expression. Thereby this volume on Transient Receptor Potential (TRP) Channels provides valuable information for readers with different expectations and backgrounds, for those who are approaching this field of research as well as for those wanting to make a trip to TRPs.




Bacterial Metabolites in Sustainable Agroecosystem


Book Description

There has been a resurgence of interest in environmental friendly, sustainable and organic cultural practices that warrants high yield and quality in agricultural crops. To enhance sustainable agricultural production and alleviate food scarcity, spoor of majority of microorganisms, especially plant growth and health promoting bacteria of eminent characteristics that allow them for exploitation in agro-ecosystem. Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Among various beneficial bacteria mediated mechanisms include direct production of phytohormones and biosurfactants experiencing quest of research and concept up gradation that can built emerging paradigm (agriculture model). Research on bacteria-mediated phytohormones is crucially important, provides key understanding of the plant growth and development. Various genera including PGPR group of bacteria are potential source of plant growth regulators. Application of such organism allow plants to survive under abiotic and biotic stress conditions besides govern phytohormone mediated immune response and manage to regulate hormones. Such group of bacteria also produce another important metabolite i.e. biosurfacatants which are involved in many important functions to bacteria itself as we ll as for the plants and their ecosystem. Biosurfactants may alter nutrient availability, endogenous metabolites such as antibiotics production, root colonization imparting protection from phytopathogens besides eradicating soil contaminants and other pollutants. The role and activities of surfactants produced by bacteria are multifarious in nature. Thus, bacterial phytohormones and biosurfactants are identified as effector molecules in plant- microbe interactions, in pathogenesis and phyto-stimulation which can either be beneficial for the bacteria itself or for the crops. This book highlights current applications and research on bacterial hormones and surfactants to provide a timely overview. The chapters have been contributed by subject experts from around the world and include topics of varied importance which include phytohormones production by rhizospheric and endophytic bacteria, their role in rhizosphere competence, plant growth regulation, bioremediation, biosurfactants as antibiofilm agents and other aspects. This major new work represents a valuable source of information to all those scientists interested in microbial technology with respect to the microbial innovative products and applications towards sustainable agroecosystem.




Chlamydomonas: Molecular Genetics and Physiology


Book Description

This Microbiology Monographs volume covers the current and most recent advances in genomics and genetics, biochemistry, physiology, and molecular biology of C. reinhardtii. Expert international scientists contribute with reviews on the genome, post-genomic techniques, the genetic toolbox development as well as new insights in regulation of photosynthesis and acclimation strategies towards environmental stresses and other structural and genetic aspects, including applicable aspects in biotechnology and biomedicine. Powerful new strategies in functional genomic and genetics combined with biochemical and physiological analyses revealed new insights into Chlamydomonas biology.




Biochemistry of Signal Transduction and Regulation


Book Description

Originally based on a graduate course taught by the author, this true classic has once again been extensively updated to incorporate key new findings in biological signaling. With over half of the content re-written, plus 70 brand new and 50 revised figures, this is the most up-to-date textbook on signaling available anywhere. Thanks to its clear structure, hundreds of illustrative drawings, as well as chapter introductions and newly added study questions, this text excels as a companion for a course on biological signaling, and equally as an introductory reference to the field for students and researchers. Generations of students and junior researchers have relied on "the Krauss" to find their way through the bewildering complexity of biological signaling pathways.




The Handbook of Plant Metabolomics


Book Description

This is the newest title in the successful Molecular Plant Biology Handbook Series. Just like the other titles in the series this new book presents an excellent overview of different approaches and techniques in Metabolomics. Contributors are either from ivy-league research institutions or from companies developing new technologies in this dynamic and fast-growing field. With its approach to introduce current techniques in plant metabolomics to a wider audience and with many labs and companies considering to introduce metabolomics for their research, the title meets a growing market. The Kahl books are in addition a trusted brand for the plant science community and have always sold above expectations.




Non-canonical Cyclic Nucleotides


Book Description

The cyclic purine nucleotides 3’,5’-cAMP and 3’,5’-cGMP are well-established second messengers. cGMP has recently been covered in a volume of the Handbook of Experimental Pharmacology (volume 191). In addition to 3’,5’-cAMP and 3’,5’-cGMP, so-called non-canonical cyclic nucleotides exist. These comprise the cyclic pyrimidine nucleotides 3’,5’-cCMP and 3’,5’-cUMP, the purine nucleotide 3’,5’-cIMP, the 2’,3’-nucleoside monophosphates and cyclic dinucleotides. In this volume of the Handbook of Pharmacology, word-leading experts in the field summarize our current knowledge on these non-canonical cyclic nucleotides, discuss open questions, future research directions and the pharmacotherapeutic implications. Special emphasis will be given to the emerging roles of 3’,5’-cCMP and 3’,5’-cUMP as second messengers with regard to generators, effectors, biological functions, inactivation and bacterial toxins. The role of 3’,5’-cIMP as potential second messenger will also be critically discussed. Furthermore, we will consider transport of cyclic nucleotides and their potential role as first messengers. The role of the cyclic dinucleotide cGAMP in the immune system will covered, too. Lastly, the book will present important methodological aspects ranging from mass-spectrometric methods for cyclic nucleotide detection to the synthesis of nucleotide analogs as experimental tools and holistic methods for analysis of cyclic nucleotide effects.