Engineering Electrodynamics


Book Description

Due to a huge concentration of electromagnetic fields and eddy currents, large power equipment and systems are prone to crushing forces, overheating, and overloading. Luckily, power failures due to disturbances like these can be predicted and/or prevented. Based on the success of internationally acclaimed computer programs, such as the authors’ own RNM-3D, Engineering Electrodynamics: Electric Machine, Transformer, and Power Equipment Design explains how to implement industry-proven modeling and design techniques to solve complex electromagnetic phenomena. Considering recent progress in magnetic and superconducting materials as well as modern methods of mechatronics and computer science, this theory- and application-driven book: Analyzes materials structure and 3D fields, taking into account magnetic and thermal nonlinearities Supplies necessary physical insight for the creation of electromagnetic and electromechanical high power equipment models Describes parameters for electromagnetic calculation of the structural parts of transformers, electric machines, apparatuses, and other electrical equipment Covers power frequency 50-60 Hz (worldwide and US) equipment applications Includes examples, case studies, and homework problems Engineering Electrodynamics: Electric Machine, Transformer, and Power Equipment Design provides engineers, students, and academia with a thorough understanding of the physics, principles, modeling, and design of contemporary industrial devices.





Book Description




Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering


Book Description

More and more researchers engage into investigation of electromagnetic applications, especially these connected with mechatronics, information technologies, medicine, biology and material sciences. It is readily seen when looking at the content of the book that computational techniques, which were under development during the last three decades and are still being developed, serve as good tools for discovering new electromagnetic phenomena. It means that the field of computational electromagnetics belongs to an application area rather than to a research area. This publication aims at joining theory and practice, thus the majority of papers are deeply rooted in engineering problems, being simultaneously of high theoretical level. The editors hope to touch the heart of the matter in electromagnetism. The book focuses on the following issues: Computational Electromagnetics; Electromagnetic Engineering; Coupled Field and Special Applications; Micro- and Special Devices; Bioelectromagnetics and Electromagnetic Hazard; and Magnetic Material Modeling.




Computational Magnetics


Book Description

This book fills the gap between theory, available computational techniques and engineering practice in the design of electrical and electromechanical machines. The theory underlying all currently recommended computational and experimental methods is covered comprehensively, including field analysis and synthesis, magnetic fields coupled to stress and thermal fields. The book is very practically oriented and includes many examples of actual solutions to real devices.




Non-linear Electromagnetic Systems


Book Description

This text is a collection of contributions covering a wide range of topics of interdisciplinary character, from materials to systems, from microdevices to large equipment, with special emphasis on emerging subjects and particular attention to advanced computational methods in order to model both devices and systems. The book provides the solution to challenging problems of research on non-linear electromagnetic systems and is expected to help researchers working in this broad area.




Computational Methods for the Innovative Design of Electrical Devices


Book Description

Computational Methods for the Innovative Design of Electrical Devices is entirely focused on the optimal design of various classes of electrical devices. Emerging new methods, like e.g. those based on genetic algorithms, are presented and applied in the design optimization of different devices and systems. Accordingly, the solution to field analysis problems is based on the use of finite element method, and analytical methods as well. An original aspect of the book is the broad spectrum of applications in the area of electrical engineering, especially electrical machines. This way, traditional design criteria of conventional devices are revisited in a critical way, and some innovative solutions are suggested. In particular, the optimization procedures developed are oriented to three main aspects: shape design, material properties identification, machine optimal behaviour. Topics covered include: • New parallel finite-element solvers • Response surface method • Evolutionary computing • Multiobjective optimization • Swarm intelligence • MEMS applications • Identification of magnetic properties of anisotropic laminations • Neural networks for non-destructive testing • Brushless DC motors, transformers • Permanent magnet disc motors, magnetic separators • Magnetic levitation systems




Electromagnetic Fields in Electrical Engineering


Book Description

This book is the collection of the contributions offered at the International Symposium on Electromagnetic Fields in Electrical Engineering, ISEF '87, held in Pavia, Italy, in September 1987. The Symposium was attended by specialists engaged in both theoretical and applied research in low-frequency electromagnetism. The charming atmosphere of Pavia and its ancient university provided a very effective environment to discuss the latest results in the field and, at the same time, to enjoy the company or colleagues and friends coming from over 15 countries. The contributions have been grouped into 7 chapters devoted to fundamental problems, computer programs, transformers, rotating electrical machines, mechanical and thermal effects, various applications and synthesis, respectively. Such a classification is merely to help the reader because a few papers could be put in several chapters. Over the past two decades electromagnetic field computations have received a big impulse by the large availability of digital computers with better and better performances in speed and capacity. Many various methods have been developed but not all of them appear convenient enough for practical engineering use. In fact, the technical and industrial challenges set some principal attributes and criteria for good computation methods. They should be relatively easy to use, fit into moderately sized computers, yield useful design data, maintain flexibility with m1n1mum cost in time and effort.




Electromagnetic Fields in Electrical Engineering


Book Description

This book contains a selection of the best papers presented at the International Symposium on Electromagnetic Fields in Electrical Engineering, held in Lodz, Poland in September 1989.




Mathematical Models for the Design of Electrical Machines


Book Description

This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.